...
首页> 外文期刊>Mathematical geosciences >Capability of Artificial Neural Network for Forward Conversion of Geodetic Coordinates to Cartesian Coordinates (X, Y, Z)
【24h】

Capability of Artificial Neural Network for Forward Conversion of Geodetic Coordinates to Cartesian Coordinates (X, Y, Z)

机译:人工神经网络将大地坐标向直角坐标(X,Y,Z)进行正向转换的能力

获取原文
获取原文并翻译 | 示例
           

摘要

The standard forward transformation equation plays a major role in coordinate transformation between global and local datums. Thus, it is a prerequisite step in the forward conversion of geodetic coordinates into cartesian coordinates in coordinate transformation from global to local datum and vice versa. Numerous studies have been carried out on converting cartesian coordinates to geodetic coordinates (reverse procedure) through the application of iterative, approximate, closed form, vector-based and computational intelligence algorithms. However, based on literature covered pertaining to this study, it was realized that the existing researches do not fully address the issue of applying and testing alternative techniques in the case of the forward conversion. Hence, the purpose of this present study was to explore the coordinate conversion performance of two different artificial neural network approaches (backpropagation artificial neural network (BPANN) and radial basis function neural network (RBFNN)) and multiple linear regression (MLR). The statistical findings revealed that the BPANN, RBFNN and MLR offered satisfactory prediction of cartesian coordinates. However, the RBFNN compared to BPANN and MLR showed better stability and more accurate prediction results. Furthermore, in terms of maximum three-dimensional position error, the RBFNN attained 0.004 m while 0.011 and 0.627 m were achieved, respectively, by MLR and BPANN. By virtue of the success achieved in this study, the main conclusion drawn here is that RBFNN provides a promising alternative in the forward conversion of geodetic coordinates into cartesian coordinates. Therefore, the capability of artificial neural network as a powerful tool for solving majority of function approximation problems in geodesy has been demonstrated.
机译:标准正向变换方程在全局和局部基准之间的坐标变换中起主要作用。因此,这是在将坐标从全局基准转换为局部基准(反之亦然)时,将大地坐标正转换为笛卡尔坐标的前提步骤。通过应用迭代,近似,闭合形式,基于矢量和计算智能算法,已经进行了许多关于将笛卡尔坐标转换为大地坐标(反向过程)的研究。但是,根据与本研究相关的文献,可以认识到现有研究并未充分解决正向转换情况下替代技术的应用和测试问题。因此,本研究的目的是探索两种不同的人工神经网络方法(反向传播人工神经网络(BPANN)和径向基函数神经网络(RBFNN))和多元线性回归(MLR)的坐标转换性能。统计结果表明,BPANN,RBFNN和MLR提供了令人满意的笛卡尔坐标预测。但是,与BPANN和MLR相比,RBFNN表现出更好的稳定性和更准确的预测结果。此外,就最大三维位置误差而言,MLR和BPANN分别使RBFNN达到0.004 m和0.011和0.627 m。由于这项研究取得了成功,这里得出的主要结论是,RBFNN在将大地坐标向笛卡尔坐标的正向转换中提供了一个有希望的选择。因此,已经证明了人工神经网络作为解决大地测量中大多数函数逼近问题的有力工具的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号