首页> 外文期刊>Marine and Petroleum Geology >Stress and pore pressure histories in complex tectonic settings predicted with coupled geomechanical-fluid flow models
【24h】

Stress and pore pressure histories in complex tectonic settings predicted with coupled geomechanical-fluid flow models

机译:用地质力学-流体耦合模型预测复杂构造环境中的应力和孔隙压力历史

获取原文
获取原文并翻译 | 示例
           

摘要

Most of the methods currently used for pore pressure prediction in sedimentary basins assume one-dimensional compaction based on relationships between vertical effective stress and porosity. These methods may be inaccurate in complex tectonic regimes where stress tensors are variable. Modelling approaches for compaction adopted within the geotechnical field account for both the full three-dimensional stress tensor and the stress history. In this paper a coupled geomechanical-fluid flow model is used, along with an advanced version of the Cam-Clay constitutive model, to investigate stress, pore pressure and porosity in a Gulf of Mexico style mini-basin bounded by salt subjected to lateral deformation. The modelled structure consists of two depocentres separated by a salt diapir. 20% of horizontal shortening synchronous to basin sedimentation is imposed. An additional model accounting solely for the overpressure generated due to 1D disequilibrium compaction is also defined. The predicted deformation regime in the two depocentres of the mini-basin is one of tectonic lateral compression, in which the horizontal effective stress is higher than the vertical effective stress. In contrast, sediments above the central salt diapir show lateral extension and tectonic vertical compaction due to the rise of the diapir. Compared to the 1D model, the horizontal shortening in the mini-basin increases the predicted present-day overpressure by 50%, from 20 MPa to 30 MPa. The porosities predicted by the mini-basin models are used to perform 1D, porosity-based pore pressure predictions. The 1D method underestimated overpressure by up to 6 MPa at 3400 m depth (26% of the total overpressure) in the well located at the basin depocentre and up to 3 MPa at 1900 m depth (34% of the total overpressure) in the well located above the salt diapir. The results show how 2D/3D methods are required to accurately predict overpressure in regions in which tectonic stresses are important. (C) 2016 Elsevier Ltd. All rights reserved.
机译:当前用于沉积盆地孔隙压力预测的大多数方法都基于垂直有效应力和孔隙率之间的关系而假定为一维压实。这些方法在应力张量可变的复杂构造方案中可能不准确。岩土工程领域内采用的压实建模方法考虑了完整的三维应力张量和应力历史。在本文中,使用耦合的地质力学流体流动模型以及先进的Cam-Clay本构模型,研究了受横向变形影响而受盐约束的墨西哥湾式微型盆地中的应力,孔隙压力和孔隙度。建模的结构由两个透盐盐底盘分隔开。施加与盆地沉降同步的水平缩短量的20%。还定义了仅考虑由于一维不平衡压实而产生的超压的附加模型。在微型盆地的两个偏心处的预测变形状态是构造横向压缩之一,其中水平有效应力高于垂直有效应力。相比之下,由于底栖动物的上升,中央盐底栖动物上方的沉积物表现出横向伸展和构造垂直压实。与一维模型相比,微型盆地的水平缩短使当前的预测超压增加了50%,从20 MPa增加到30 MPa。微型盆地模型预测的孔隙度用于执行一维基于孔隙度的孔隙压力预测。一维方法低估了盆地偏心井在3400 m深度处的超压,最高可达6 MPa(占总超压的26%),而在1900 m深度处,该压力则高估了3 MPa,占总超压的34%)位于盐底盘上方。结果表明,在构造应力很重要的区域中,如何需要2D / 3D方法才能准确预测超压。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号