...
首页> 外文期刊>Macromolecules >Surface tension and melt cohesive energy density of polymer melts including high melting and high glass transition polymers
【24h】

Surface tension and melt cohesive energy density of polymer melts including high melting and high glass transition polymers

机译:聚合物熔体的表面张力和熔体凝聚能密度,包括高熔点和高玻璃化转变聚合物

获取原文
获取原文并翻译 | 示例
           

摘要

Melt surface tensions and pressure-volume-temperature (PVT) data were obtained for many hydrophobic and hydrophilic polymers including high melting polyesters and polyamides such as poly(ethylene terephthalate) and nylon 66. A model is developed that uses surface tension to convert PVT data (from which the thermodynamic quantity "internal pressure" is calculated) into another thermodynamic bulk property, the cohesive energy density (CED). The errors inherent in assuming that the CED has the same proportionality factor to internal pressure independent of chemical structure are discussed. The results emphasize the difference between internal pressure and CED, where only internal pressure can be directly obtained from PVT data. The CED is the quantity that must be used for calculations of surface tension, and examples of the determination of melt surface tension are given for several polar or hydrogen-bonding polymers and semicrystalline or amorphous polymers of different molecular weights. Poly(2-vinyl pyridine) is contrasted with poly(4-vinyl pyridine), where the strong hydrogen bonding of the latter contributes to a large deviation of the proportionality factor between CED and internal pressure compared to that of the typical weakly interacting polymer. The results indicate that thermodynamic quantities, such as CED as a function of temperature in the melt, can be calculated for almost any molten liquid using these new models. The calculation of the CED for nylon 66 using structure/property relationships also provides a method for the determination of surface tensions for that polymer that cannot be directly measured. [References: 26]
机译:获得了许多疏水性和亲水性聚合物的熔体表面张力和压力体积温度(PVT)数据,包括高熔点聚酯和聚酰胺,例如聚对苯二甲酸乙二酯和尼龙66。开发了一个使用表面张力转换PVT数据的模型(据此计算热力学量“内部压力”)转换为另一种热力学体积特性,即内聚能密度(CED)。讨论了假设CED与内部压力具有相同比例因数而与化学结构无关的固有误差。结果强调了内部压力和CED之间的差异,其中只能从PVT数据直接获得内部压力。 CED是计算表面张力所必须使用的数量,并且给出了几种极性或氢键聚合物以及不同分子量的半结晶或无定形聚合物的熔体表面张力测定示例。聚(2-乙烯基吡啶)与聚(4-乙烯基吡啶)形成对比,聚(4-乙烯基吡啶)与典型的弱相互作用聚合物相比,后者的强氢键导致CED和内压之间的比例因子有较大偏差。结果表明,使用这些新模型,几乎可以对任何熔融液体计算出热力学量,例如CED与熔体温度的关系。使用结构/性质关系计算尼龙66的CED还提供了一种确定无法直接测量的聚合物表面张力的方法。 [参考:26]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号