...
首页> 外文期刊>Functional Ecology >Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem.
【24h】

Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem.

机译:温度和水对北极高寒带苔原生态系统中植被的出现,微生物动力学以及土壤碳和氮通量的控制。

获取原文
获取原文并翻译 | 示例
           

摘要

Arctic tundra ecosystems contain 14% of the global soil carbon (C) store which is becoming vulnerable to decomposition. Arctic soil organic matter (SOM) contains large amounts of old, recalcitrant, high molecular weight (MW) C compounds which are protected from decomposition whilst soils remain frozen. Climatic change alters soil temperature and water regimes in the Arctic, however, the impact of these changes on C decomposition and storage is poorly understood. We investigated vegetation emergence, microbial dynamics and nutrient fluxes in response to snow melt on the high Arctic Svalbard archipelago using field and laboratory studies. Using bacterial and archaeal genetic material (16S rRNA) and ammonia-oxidising genes, microbial communities were quantified in transects across the active snow melt front. The effects of soil temperature and water content on SOM decomposition rates were measured using 14C-labelled low and high MW compounds. Vegetation and below-ground microbial communities, in the field, responded rapidly with peaks in nutrient availability and soil respiration observed within 72 h of snowmelt. Temperature strongly drives early growing season C dynamics in the Arctic. We suggest the nutrient peaks following snowmelt, coupled with higher levels of DNA in the subniveal zone are due to the decomposition of bacteria and archaea from previous years. We show, in the laboratory, when soils thaw, mineralisation of recalcitrant C (high MW) compounds was sensitive to soil water but not to increasing temperatures. In contrast, low MW compounds exhibited sensitivity to both temperature and soil water. We suggest that if future soil water content increases under climate change, high MW compounds could become more susceptible to decomposition, releasing more C to the atmosphere.
机译:北极苔原生态系统占全球土壤碳(C)储量的14%,这变得容易分解。北极土壤有机物(SOM)包含大量旧的难分解的高分子量(MW)C化合物,这些化合物在土壤保持冻结的同时也可以防止分解。气候变化改变了北极地区的土壤温度和水分状况,但是,这些变化对碳分解和存储的影响知之甚少。我们利用田野和实验室研究调查了北极斯瓦尔巴特群岛高群岛上植被的出现,微生物动力学和养分通量对融雪的响应。利用细菌和古细菌遗传物质(16S rRNA)和氨氧化基因,在活跃的融雪锋面的样带中对微生物群落进行了定量。用 14 C标记的低分子量和高分子量化合物测量了土壤温度和水分含量对SOM分解速率的影响。在融雪的72小时内,田间的植被和地下微生物群落反应迅速,养分利用率和土壤呼吸达到峰值。温度极大地推动了北极早期生长季节C的动态。我们认为融雪后的养分达到峰值,再加上次生区中较高水平的DNA,这是由于前几年细菌和古细菌的分解所致。我们显示,在实验室中,当土壤融​​化时,顽固性C(高分子量)化合物的矿化对土壤水敏感,但对温度升高不敏感。相反,低分子量化合物对温度和土壤水均表现出敏感性。我们建议,如果在气候变化下未来土壤含水量增加,高分子量化合物可能更易分解,从而向大气释放更多的碳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号