首页> 外文期刊>Fisheries Research >Use of individual types of fishing effort in analyzing catch and effort data by use of a generalized linear model
【24h】

Use of individual types of fishing effort in analyzing catch and effort data by use of a generalized linear model

机译:通过广义线性模型在分析捕捞量和努力量数据中使用各种类型的捕捞努力量

获取原文
获取原文并翻译 | 示例
           

摘要

Fishing effort is a function of many (continuous) variables which fishers can manipulate. However, when catch and fishing effort data are analysed using a generalized linear model, individual types of fishing effort usually enter as a composite quantity. But not all quantities can be combined into a composite quantity. Use of such data this way generally leads to a loss of information and incurs a model bias. In this paper, I analyse catch and effort data for the blue swimmer crab off South Australia by a direct use of individual types of fishing effort to extract a relative index of biomass, and use the concept of homogeneous functions to present some of the results. I also give formulae for choosing a combination of different types of fishing effort to effect a specified level of catch in both absolute and relative terms. Assuming that catch follows an independent gamma, normal, negative binomial, or Poisson distribution, fitting of a generalized linear model with a log-link function to the commercial catch and effort data suggests that: (1) the exploitable biomass remained relatively constant from 1 July 1983 to 30 June 1996; (2) the relative instantaneous rate of fishing mortality of a particular sex and age (if gear selectivity was constant over time) slightly increased over time; (3) a 1% increase in the number of days fished gave about 0.85% increase in catch whereas a 1% increase in the number of people on a boat led to only about a 0.45% increase in catch. This implies that use of a composite measure of fishing effort such as boat days and man days when analysing catch and effort data is inappropriate for this fishery. Although a generalized linear model may be a reasonable first-order approximation, catch and effort data are best interpreted through a process model. Copyright 2004 Published by Elsevier B.V.
机译:捕捞努力是渔民可以操纵的许多(连续)变量的函数。但是,当使用广义线性模型分析渔获量和捕捞努力数据时,通常将单个类型的捕捞努力输入为一个复合量。但并非所有数量都可以合并为一个复合数量。以这种方式使用此类数据通常会导致信息丢失并引起模型偏差。在本文中,我通过直接使用各种类型的捕捞努力来提取生物量的相对指数,并使用同构函数的概念来介绍一些结果,从而分析了南澳大利亚州蓝色游泳蟹的捕获量和努力量数据。我还提供了一些公式,用于选择不同类型的捕捞努力的组合,以绝对和相对的方式实现特定水平的捕捞。假设捕捞量遵循独立的伽马,正态,负二项式或泊松分布,则具有对数链接功能的广义线性模型与商业捕捞量和努力量数据的拟合表明:(1)可利用生物量从1开始保持相对恒定1983年7月至1996年6月30日; (2)特定性别和年龄的相对瞬时捕鱼死亡率(如果渔具选择性随时间变化)随时间略有增加; (3)捕鱼天数增加1%,渔获量增加约0.85%,而船上人数增加1%,渔获量仅增加约0.45%。这意味着在分析捕捞量和努力量数据时,使用综合的捕捞努力量度(例如船日和工作日)不适合该渔业。尽管广义线性模型可能是合理的一阶近似值,但捕获量和工作量数据最好通过过程模型进行解释。版权所有2004,由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号