首页> 外文期刊>Forest Ecology and Management >Temporal carbon dynamics of forests in Washington, US: Implications for ecological theory and carbon management
【24h】

Temporal carbon dynamics of forests in Washington, US: Implications for ecological theory and carbon management

机译:美国华盛顿森林的时间碳动态:对生态理论和碳管理的启示

获取原文
获取原文并翻译 | 示例
           

摘要

We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer scale of forest types would reduce variability, yielding better fitting models. We fit models for three temporal dynamics: accumulation of live biomass, accumulation of dead biomass, and net primary productivity (NPP). We compared fitted model parameters among ecosections and among forest types to determine differences in potential C storage and uptake. Models of live biomass C accumulation and NPP fit the data better at the scale of forest types, suggesting this finer scale is important for reducing variability. Model fit for dead biomass C accumulation depended more on the region than on the scale of analysis. Dead biomass C was highly variable and a relationship with forest age was found only in some forest types of the eastern Cascades and Okanogan Highlands. Indicators of C storage potential differed between forest types and differences were consistent with expectations based on spatial variability in climate. Across the study area, maximum live biomass C varied from 6.5 to 38.6kgCmpo and the range of ages at which 90% of maximum is reached varied from 57 to 838years. Maximum NPP varied from 0.37 to 0.94kgCmpoyrp# and the age of maximum NPP varied from 65 to 543yrs. Forests with the greatest C storage potential are wet forests of the western Cascades. Forests with the greatest potential NPP are 65100-year-old mesic western redcedar-western hemlock forests and riparian forests, although limited data suggest maximum NPP of coastal sitka spruce forests may be even greater. The observed relationship between the ages at which maximum NPP and maximum live biomass are reached for a given forest type suggests that there is a trade-off between managing for maximum live biomass (storage) vs. NPP (uptake) in some forest types but an optimal age for C management in others. The empirical models of C dynamics in this study can be used to quantify the effects of age-class distributions on C storage and NPP for large areas composed of different forest types. Also, the models can be used to test the effects of current or future natural and anthropogenic disturbance regimes on C sequestration, providing an alternative to biogeochemical process models and stand-scale methods.
机译:我们使用碳动力学作为森林年龄函数的理论模型,对美国华盛顿森林的碳(C)动态进行了量化。我们将经验模型拟合为两个尺度的森林清单数据的时间序列:生态尺度内的粗尺度生态系统分类(生态剖面)和森林类型(潜在植被)。我们假设在更细的森林类型尺度上进行分析会减少变异性,从而产生更好的拟合模型。我们针对三个时间动态拟合模型:活生物量积累,死生物量积累和净初级生产力(NPP)。我们比较了生态剖面和森林类型之间的拟合模型参数,以确定潜在的碳储存和吸收差异。活生物量碳积累和NPP的模型在森林类型的规模上更适合该数据,这表明较小的规模对于减少变异性很重要。死生物量碳积累的模型拟合更多地取决于区域而不是分析规模。死生物量碳变化很大,并且仅在东部喀斯喀特山脉和冈野根高原的某些森林类型中发现了与森林年龄的关系。森林类型之间碳储存潜力的指标不同,差异也与基于气候空间变化的预期一致。在整个研究区域中,最大活生物量碳的变化范围为6.5至38.6kgCmpo,达到最大最大值的90%的年龄范围为57至838岁。最大NPP的范围从0.37到0.94kgCmpoyrp#,最大NPP的年龄从65到543岁。碳储存潜力最大的森林是喀斯喀特西部的湿林。 NPP潜力最大的森林是65100年的中西部西部红杉西部铁杉林和河岸林,尽管有限的数据表明沿海西特卡云杉林的最大NPP可能更大。对于给定的森林类型,达到最大NPP和最大活生物量的年龄之间的关系表明,在某些森林类型中,最大活生物量(存储)与NPP(吸收)的管理之间需要权衡,但是在其他人中进行C管理的最佳年龄。在这项研究中,碳动力学的经验模型可以用来量化年龄类别的分布对由不同森林类型组成的大面积区域的碳储存和NPP的影响。此外,该模型可用于测试当前或未来的自然和人为干扰制度对C隔离的影响,为生物地球化学过程模型和规模试验方法提供了替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号