首页> 外文期刊>Forest Ecology and Management >Potential knowledge gain in large-scale simulations of forest carbon fluxes from remotely sensed biomass and height.
【24h】

Potential knowledge gain in large-scale simulations of forest carbon fluxes from remotely sensed biomass and height.

机译:从遥感生物量和高度进行森林碳通量的大规模模拟时,可能会获得知识。

获取原文
获取原文并翻译 | 示例
           

摘要

Global vegetation models (GVMs) simulate CO2, water and energy fluxes at large scales, typically no smaller than 10x10 km. GVM simulations are thus expected to simulate the average functioning, but not the local variability. The two main limiting factors in refining this scale are (1) the scale at which the pedo-climatic inputs - temperature, precipitation, soil water reserve, etc. - are available to drive models and (2) the lack of geospatial information on the vegetation type and the age of forest stands. This study assesses how remotely sensed biomass or stand height could help the new generation of GVMs, which explicitly represent forest age structure and management, to better simulate this local variability. For the ORCHIDEE-FM model, we find that a simple assimilation of biomass or height brings down the root mean square error (RMSE) of some simulated carbon fluxes by 30-50%. Current error levels of remote sensing estimates do not impact this improvement for large gross fluxes (e.g. terrestrial ecosystem respiration), but they reduce the improvement of simulated net ecosystem productivity, adding 13.5-21% of RMSE to assimilations using the in situ estimates. The data assimilation under study is more effective to improve the simulation of respiration than the simulation of photosynthesis. The assimilation of height or biomass in ORCHIDEE-FM enables the correct retrieval of variables that are more difficult to measure over large areas, such as stand age. A combined assimilation of biomass and net ecosystem productivity could possibly enable the new generation of GVMs to retrieve other variables that are seldom measured, such as soil carbon content.
机译:全球植被模型(GVM)可大规模模拟CO 2 ,水和能量通量,通常不小于10x10 km。因此,GVM模拟有望模拟平均功能,而不模拟 local 变异性。细化此比例的两个主要限制因素是(1)可用于驱动模型的人为气候输入的比例-温度,降水量,土壤水储量等-(2)缺乏关于地理信息的地理空间信息植被类型和林分年龄。这项研究评估了遥感生物量或林分高度如何帮助新一代GVM(明确代表森林年龄结构和管理)更好地模拟这种局部变化。对于ORCHIDEE-FM模型,我们发现生物量或高度的简单同化将某些模拟碳通量的均方根误差(RMSE)降低了30-50%。当前的遥感估计误差水平不会影响大通量(例如陆地生态系统呼吸)的改善,但会降低模拟净生态系统生产力的改善,在使用i的同化中增加13.5-21%的RMSE 估算。研究中的数据同化比光合作用的模拟更有效地改善了呼吸的模拟。 ORCHIDEE-FM中高度或生物量的同化可以正确检索变量,这些变量在大范围内(例如树龄)更难测量。生物量和净生态系统生产力的综合吸收可能使新一代GVM能够检索很少测量的其他变量,例如土壤碳含量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号