首页> 外文期刊>Foundations of computational mathematics >Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
【24h】

Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients

机译:一类具有随机系数的椭圆型偏微分方程的多级拟蒙特卡罗有限元方法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper is a sequel to our previous work (Kuo et al. in SIAM J Numer Anal, 2012) where quasi-Monte Carlo (QMC) methods (specifically, randomly shifted lattice rules) are applied to finite element (FE) discretizations of elliptic partial differential equations (PDEs) with a random coefficient represented by a countably infinite number of terms. We estimate the expected value of some linear functional of the solution, as an infinite-dimensional integral in the parameter space. Here, the (single-level) error analysis of our previous work is generalized to a multi-level scheme, with the number of QMC points depending on the discretization level and with a level-dependent dimension truncation strategy. In some scenarios, it is shown that the overall error (i.e., the root-mean-square error averaged over all shifts) is of order , where is the finest FE mesh width, or for arbitrary , where denotes the maximal number of QMC sampling points in the parameter space. For these scenarios, the total work for all PDE solves in the multi-level QMC FE method is essentially of the order of one single PDE solve at the finest FE discretization level, for spatial dimension with linear elements. The analysis exploits regularity of the parametric solution with respect to both the physical variables (the variables in the physical domain) and the parametric variables (the parameters corresponding to randomness). As in our previous work, families of QMC rules with "POD weights" ("product and order dependent weights") which quantify the relative importance of subsets of the variables are found to be natural for proving convergence rates of QMC errors that are independent of the number of parametric variables.
机译:本文是我们之前的工作(Kuo等人,在SIAM J Numer Anal,2012年)的续篇,其中将准蒙特卡罗(QMC)方法(特别是随机移位的晶格规则)应用于椭圆的有限元(FE)离散化具有由无穷多个项表示的随机系数的偏微分方程(PDE)。我们估计解的一些线性函数的期望值,作为参数空间中的无穷维积分。在这里,我们先前工作的(单级)误差分析被推广到一个多级方案,其中QMC点的数量取决于离散化级别,并且具有与级别相关的维截断策略。在某些情况下,表明总体误差(即,在所有移位中平均的均方根误差)的阶次为,其中最小的FE网格宽度为,对于任意,为,其中QMC采样的最大数目点在参数空间中。对于这些情况,对于多维度QMC FE方法,对于具有线性元素的空间维,所有工作的总工作量基本上是在最佳FE离散化级别上单个PDE解决的数量级。分析利用参数解相对于物理变量(物理域中的变量)和参数变量(与随机性相对应的参数)的规律性。与我们以前的工作一样,发现带有“ POD权重”(“产品和订单相关权重”)的QMC规则家族可以量化变量子集的相对重要性,这对于证明独立于参数变量的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号