...
首页> 外文期刊>First Break >4D seismic, 4D geomechanics and hydraulic stimulation in the low permeability South Arne chalk field
【24h】

4D seismic, 4D geomechanics and hydraulic stimulation in the low permeability South Arne chalk field

机译:低渗透性南阿尔恩粉笔田中的4D地震,4D地质力学和水力刺激

获取原文
获取原文并翻译 | 示例
           

摘要

Geomechanical models have many purposes in res- ervoir management. Applications include the pre- diction of reservoir compaction, subsidence and long-term well-bore integrity, optimization of drill- ing trajectories and mudweights, and the design of hydraulic stimulation and perforation campaigns. The basis for all geomechanical applications is an accurate knowledge of the subsurface stress state, pore pressure and the mechanical properties, which in combination form a geomechanical (or mechanical earth) model. To increase trust in their predic- tions, these models need to match data observations that are linked to the subsurface stress-state. In the initial phases of reservoir production, such observations typically include observations during drilling (e.g., loss of drilling mud allows estimation of an upper bound for pore pressure, and inflow events give a lower bound for pore pressure), observations of drilling-induced fractures and wellbore breakouts, as well as leak-off and formation integrity tests. During reservoir production wellbore failure in shear and compaction gives indications of production-induced localized strain. On a field-wide scale, time-lapse seismic time shifts in the overbur- den are now commonly ascribed to reservoir compaction and serve as a field-wide calibration method for geomechanical models. Reservoir compaction causes overburden elongation and an associated velocity slow-down (Hatchell and Bourne, 2005), and this causes an increase in two-way traveltime between base- and monitor survey, termed time-lapse time shift. This close link between observed time-lapse time shifts and the modelled reservoir compaction and overburden elon- gation is now being used as a field-wide calibration tool for geomechanical models (e.g., Staples et al., 2007; Herwanger and Koutsabeloulis, 2011).
机译:地质力学模型在储层管理中有许多用途。应用包括储层压实,下沉和长期井筒完整性的预测,钻井轨迹和泥浆重量的优化以及水力增产和射孔运动的设计。所有地质力学应用的基础是对地下应力状态,孔隙压力和力学特性的准确了解,这些知识共同构成了地质力学(或机械地球)模型。为了增加对它们的预测的信任,这些模型需要匹配与地下应力状态相关的数据观测值。在储层生产的初始阶段,此类观测结果通常包括钻井过程中的观测结果(例如,钻探泥浆的损失允许估算孔隙压力的上限,而流入事件则给出孔隙压力的下限),钻井诱发的裂缝井眼破裂,泄漏和地层完整性测试。在储层生产过程中,井眼在剪切和压实方面的破坏表明了生产引起的局部应变。在整个油田范围内,覆盖层中随时间推移的地震时移现在通常归因于储层压实,并用作地质力学模型的整个油田标定方法。储层的压实会导致覆盖层伸长和相应的速度减慢(Hatchell和Bourne,2005年),这会导致基础勘测和监测勘测之间的双向行进时间增加,称为时移时移。观测到的时移和模型化的储层压实和上覆隆起之间的紧密联系现在被用作地质力学模型的现场校准工具(例如,Staples等,2007; Herwanger和Koutsabeloulis,2011)。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号