...
首页> 外文期刊>Food and bioprocess technology >Estimation of accumulated lethality under pressure-assisted thermal processing.
【24h】

Estimation of accumulated lethality under pressure-assisted thermal processing.

机译:压力辅助热处理下累积杀伤力的估算。

获取原文
获取原文并翻译 | 示例
           

摘要

A study was conducted to develop an integrated process lethality model for pressure-assisted thermal processing (PATP) taking into consideration the lethal contribution of both pressure and heat on spore inactivation. Assuming that the momentary inactivation rate was dependent on the survival ratio and momentary pressure-thermal history, a differential equation was formulated and numerically solved using the Runge-Kutta method. Published data on combined pressure-heat inactivation of Bacillus amyloliquefaciens spores were used to obtain model kinetic parameters that considered both pressure and thermal effects. The model was experimentally validated under several process scenarios using a pilot-scale high-pressure food processor. Using first-order kinetics in the model resulted in the overestimation of log reduction compared to the experimental values. When the n th-order kinetics was used, the computed accumulated lethality and the log reduction values were found to be in reasonable agreement with the experimental data. Within the experimental conditions studied, spatial variation in process temperature resulted up to 3.5 log variation in survivors between the top and bottom of the carrier basket. The predicted log reduction of B. amyloliquefaciens spores in deionized water and carrot puree had satisfactory accuracy (1.07-1.12) and regression coefficients (0.83-0.92). The model was also able to predict log reductions obtained during a double-pulse treatment conducted using a pilot-scale high-pressure processor. The developed model can be a useful tool to examine the effect of combined pressure-thermal treatment on bacterial spore lethality and assess PATP microbial safety. copyright Springer Science+Business Media New York 2013.
机译:考虑到压力和热量对孢子灭活的致死作用,进行了研究以开发用于压力辅助热处理(PATP)的集成过程致死率模型。假设瞬时失活速率取决于存活率和瞬时压力-热历史,则使用Runge-Kutta方法建立微分方程并进行数值求解。使用解淀粉芽孢杆菌孢子的组合压力-热失活的公开数据来获得考虑压力和热效应的模型动力学参数。使用中试规模的高压食品加工机,在几个过程场景下对该模型进行了实验验证。与实验值相比,在模型中使用一阶动力学会导致对数减少的高估。当使用第n次动力学时,计算出的累积杀伤力和对数减少值与实验数据合理吻合。在所研究的实验条件下,过程温度的空间变化导致在提篮的顶部和底部之间的幸存者的变化高达3.5 log。去离子水和胡萝卜泥中的解淀粉芽孢杆菌孢子的预计对数减少具有令人满意的准确性(1.07-1.12)和回归系数(0.83-0.92)。该模型还能够预测使用中试规模的高压处理器进行的双脉冲处理过程中获得的对数减少。所开发的模型可以作为检查组合压力热处理对细菌孢子致死率的影响并评估PATP微生物安全性的有用工具。版权所有Springer Science + Business Media纽约,2013年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号