首页> 外文期刊>Fluid Phase Equilibria >Prediction of isoenthalps, Joule-Thomson Coefficients and Joule-Thomson inversion curves of refrigerants by molecular simulation
【24h】

Prediction of isoenthalps, Joule-Thomson Coefficients and Joule-Thomson inversion curves of refrigerants by molecular simulation

机译:通过分子模拟预测制冷剂的等焓,焦耳-汤姆森系数和焦耳-汤姆森反演曲线

获取原文
获取原文并翻译 | 示例
           

摘要

We describe molecular simulation methodology based on the recently proposed NPH MC algorithm to calculate isoenthalps (HC), Joule-Thomson coefficients, mu, (JTC) and Joule-Thomson inversion curves (JTIC), and apply it to the representative ethane-based alternative refrigerants R125, R134a and R152a over a wide range of thermodynamic conditions. Although JTIC have been calculated previously by molecular simulation, HC and JTC have rarely been studied by this approach, due to the requirement to incorporate ideal gas specific heat data, c(p)(IG)(T). Traditionally, calculations of HC, JTC and JTIC have been implemented using multi-parameter empirical equations fitted to experimental data. In contrast, molecular simulation methodology requires a force field (FF) describing the molecular interactions, which contains a relatively small number of adjustable parameters. Our study uses FFs from the literature, and c(p)(IG)(T) from a comprehensive compilation based solely on quantum and statistical mechanical calculations. Our simulation results are compared with pseudo-experimental results obtained from the REFPROP software package. We generated results in both single- and two-phase regions, and for thermodynamic conditions outside the range of REFPROP's capabilities. Where both sets of results are available, the simulation results are in good agreement with those of REFPROP. Our studies also suggest that more accurate quantum and statistical mechanical calculations of the refrigerant c(p)(IG)(T), which are feasible with current computer technology, would improve the reliability of both empirically based and molecular simulation calculations of HC and JTC for existing refrigerants, and would also reduce the experimental data requirement for newly proposed candidate refrigerants. Finally, we also compare our results with those from new calculations using two representative cubic equations of state (EOS); they provide reasonable but not quantitatively accurate results, particularly for mu and the JTIC. (C) 2014 Elsevier B.V. All rights reserved.
机译:我们基于最近提出的NPH MC算法描述分子模拟方法,以计算等焓(HC),焦耳-汤姆森系数,μ(JTC)和焦耳-汤姆森反演曲线(JTIC),并将其应用于基于乙烷的代表性方法制冷剂R125,R134a和R152a在各种热力学条件下工作。尽管先前已通过分子模拟计算出JTIC,但由于需要结合理想的气体比热数据c(p)(IG)(T),因此很少使用这种方法研究HC和JTC。传统上,HC,JTC和JTIC的计算是使用适合实验数据的多参数经验方程式进行的。相反,分子模拟方法需要描述分子相互作用的力场(FF),该力场包含相对少量的可调参数。我们的研究使用文献中的FFs,以及仅基于量子和统计力学计算的综合汇编中的c(p)(IG)(T)。我们的仿真结果与从REFPROP软件包获得的伪实验结果进行了比较。我们在单相和两相区域以及REFPROP功能范围之外的热力学条件下均产生了结果。如果两组结果均可用,则模拟结果与REFPROP的结果非常一致。我们的研究还表明,对制冷剂c(p)(IG)(T)进行更精确的量子和统计力学计算(使用当前的计算机技术是可行的)将提高HC和JTC的基于经验和分子模拟计算的可靠性对于现有的制冷剂,也将减少对新提议的候选制冷剂的实验数据要求。最后,我们还将我们的结果与使用两个代表性的状态立方方程(EOS)进行的新计算的结果进行比较。它们提供合理但不定量的准确结果,特别是对于mu和JTIC。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号