首页> 外文期刊>Canadian Journal of Civil Engineering >Effect of orifice diameter, depth of air injection, and air flow rate on oxygen transfer in a pilot-scale, full lift, hypolimnetic aerator
【24h】

Effect of orifice diameter, depth of air injection, and air flow rate on oxygen transfer in a pilot-scale, full lift, hypolimnetic aerator

机译:口径,空气注入深度和空气流量对中试规模全升程低磁通气机中氧气传输的影响

获取原文
获取原文并翻译 | 示例
       

摘要

A pilot-scale, full lift, hypolimnetic aerator was used to examine the effect of diffuser pore diameter, depth of diffuser submergence, and gas flow rate on oxygen transfer, using four standard units of measure for quantifying oxygen transfer: (a) K_La_(20) (h~(-1)), the oxygen transfer coefficient at 20 deg C; (b) SOTR (g O_2 centre dot h~(-1)), the standard oxygen transfer rate; (c) SAE (g O_2 centre dot kWh~(-1)), the standard aeration efficiency and (d) SOTE (percent), the standard oxygen transfer efficiency. Diffuser depth (1.5 and 2.9 m) exerted a significant effect on K_La_(20), SOTR, SAE, and SOTE, with all units of measure increasing in response to increased diffuser depth. Both K_La_(20) and SOTR responded positively to increased gas flow rates (10, 20, 30, and 40 L centre dot min~(-1)), whereas both SAE and SOTE responded negatively. Orifice diameter (140, 400, and 800 mu m) exerted a significant effect on K_La_(20), SOTR, SAE, and SOTE, with all units of measure increasing with decreasing orifice size. These experiments demonstrate how competing design factors interact to determine overall oxygen transfer rates in full lift hypolimnetic aeration systems. The practical application for full lift hypolimnetic aerator design is to maximize the surface area of the bubbles, use fine (i.e., approx 140 mu m) pore diameter diffusers, and locate the diffusers at the maximum practical depth.
机译:中试规模的全升程低通气曝气器用于检验扩散器孔径,扩散器浸没深度和气体流速对氧气传输的影响,使用四个标准的度量单位来量化氧气传输:(a)K_La_( 20)(h〜(-1)),在20摄氏度时的氧传递系数; (b)SOTR(g O_2中心点h〜(-1)),标准氧气传输速率; (c)SAE(g O_2中心点kWh〜(-1)),标准曝气效率;(d)SOTE(百分比),标准氧气输送效率。扩散器深度(1.5和2.9 m)对K_La_(20),SOTR,SAE和SOTE产生了显着影响,所有度量单位都随着扩散器深度的增加而增加。 K_La_(20)和SOTR都对增加的气体流量产生积极响应(10、20、30和40 L中心点min〜(-1)),而SAE和SOTE两者均呈负响应。孔口直径(140、400和800μm)对K_La_(20),SOTR,SAE和SOTE产生了显着影响,所有测量单位都随着孔口尺寸的减小而增加。这些实验证明了竞争设计因素如何相互作用以确定全升程低通气曝气系统中的总氧气传输速率。全升程低通气曝气器设计的实际应用是使气泡的表面积最大,使用细小(即约140微米)的孔径扩散器,并将扩散器放置在最大实际深度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号