...
首页> 外文期刊>Glia >High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport
【24h】

High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport

机译:归因于快速碳酸氢根转运的小鼠皮质星形胶质细胞中的高效胞质H +缓冲

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cytosolic H+ buffering plays a major role for shaping intracellular H+ shifts and hence for the availability of H+ for biochemical reactions and acid/base-coupled transport processes. H+ buffering is one of the prime means to protect the cell from large acid/base shifts. We have used the H+ indicator dye BCECF and confocal microscopy to monitor the cytosolic H+ concentration, [H+](i), in cultured cortical astrocytes of wild-type mice and of mice deficient in sodium/bicarbonate cotransporter NBCe1 (NBCe1-KO) or in carbonic anhydrase isoform II (CAII-KO). The steady-state buffer strength was calculated from the amplitude of [H+](i) transients as evoked by CO2/HCO3- and by butyric acid in the presence and absence of CO2/HCO3-. We tested the hypotheses if, in addition to instantaneous physicochemical H+ buffering, rapid acid/base transport across the cell membrane contributes to the total, effective cytosolic H+ buffering. In the presence of 5% CO2/26 mM HCO3-, H+ buffer strength in astrocytes was increased 4-6 fold, as compared with that in non-bicarbonate, HEPES-buffered solution, which was largely attributable to fast HCO3- transport into the cells via NBCe1, supported by CAII activity. Our results show that within the time frame of determining physiological H+ buffering in cells, fast transport and equilibration of CO2/H+/HCO3- can make a major contribution to the total effective H+ buffer strength. Thus, effective cellular H+ buffering is, to a large extent, attributable to membrane transport of base equivalents rather than a purely passive physicochemical process, and can be much larger than reported so far. Not only physicochemical H+ buffering, but also rapid import of HCO3- via the electrogenic sodium-bicarbonate cotransporter NBCe1, supported by carbonic anhydrase II (CA II), was identified to enhance cytosolic H+ buffer strength substantially. GLIA 2015;63:1581-1594
机译:胞质H +缓冲液在塑造细胞内H +转变中起主要作用,因此在生化反应和酸/碱耦合的运输过程中对H +的可用性也起着重要作用。 H +缓冲是保护细胞免受大的酸/碱迁移的主要手段之一。我们已经使用H +指示剂染料BCECF和共聚焦显微镜来监测野生型小鼠和缺乏钠/碳酸氢盐共转运蛋白NBCe1(NBCe1-KO)的小鼠培养的皮质星形胶质细胞中的胞浆H +浓度[H +](i)或在碳酸酐酶同工型II(CAII-KO)中。由存在和不存在CO2 / HCO3-的情况下由CO2 / HCO3-和丁酸引起的[H +](i)瞬变幅度计算出稳态缓冲强度。我们测试了假说,除了瞬时物理化学H +缓冲作用之外,跨细胞膜的快速酸/碱转运是否有助于总的有效胞质H +缓冲作用。在存在5%CO2 / 26 mM HCO3-的情况下,与非碳酸氢盐HEPES缓冲溶液相比,星形胶质细胞中的H +缓冲强度增加了4-6倍,这在很大程度上归因于HCO3-迅速转运至CAII活性支持通过NBCe1的细胞。我们的结果表明,在确定细胞中生理性H +缓冲的时间内,CO2 / H + / HCO3-的快速转运和平衡可对总有效H +缓冲强度做出重大贡献。因此,有效的细胞H +缓冲在很大程度上归因于碱当量的膜转运,而不是纯粹的被动物理化学过程,并且可能远比迄今为止报道的要大。不仅通过物理化学H +缓冲,而且还通过碳酸酐酶II(CA II)的支持,通过电化碳酸氢钠共转运蛋白NBCe1快速导入HCO3-,从而显着增强了胞质H +缓冲强度。 GLIA 2015; 63:1581-1594

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号