...
首页> 外文期刊>Global Biogeochemical Cycles >Bacterioneuston control of air-water methane exchange determined with a laboratory gas exchange tank
【24h】

Bacterioneuston control of air-water methane exchange determined with a laboratory gas exchange tank

机译:用实验室气体交换罐确定空气-甲烷交换的细菌-油斯顿控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

[1] The apparent transfer velocities (k_w) of CH_4, N_2O, and SF_6 were determined for gas invasion and evasion in a closed laboratory exchange tank. Tank water (pure Milli-RO water or artificial seawater prepared in Milli-RO) and/or tank air gas compositions were adjusted, with monitoring of subsequent gas transfer by gas chromatography. Derived k_w was converted to “apparent k_(600),” the value for CO_2 in freshwater at 20 ℃. For CH_4, analytical constraints precluded estimating apparent k_(600) based on tank air measurements. In some experiments we added strains of live methanotrophs. In others we added chemically deactivated methanotrophs, non-CH_4 oxidizers (Vibrio), or bacterially associated surfactants, as controls. For all individual controls, apparent k_(600) estimated from CH_4, N_2O, or SF_6 was indistinguishable. However, invasive estimates always exceeded evasive estimates, implying some control of gas invasion by bubbles. Estimates of apparent k600 differed significantly between methanotroph strains, possibly reflecting species-specific surfactant release. For individual strains during gas invasion, apparent k_(600) estimated from CH_4, N_2O, or SF_6 was indistinguishable, whereas during gas evasion, k_(600)-CH_4 was significantly higher than either k_(600)-N_2O or k_(600)-SF_6, which were identical. Hence evasive k_(600)-CH_4/k_(600)-SF_6 was always significantly above unity, whereas invasive k_(600)-CH_4/k_(600)-SF_6 was not significantly different from unity. Similarly, k600-CH4/k_(600)-SF_6 for the controls and k_(600)-N_2O/k_(600)-SF_6 for all experiments did not differ significantly from unity. Our results are consistent with active metabolic control of CH4 exchange by added methanotrophs in the tank microlayer, giving enhancements of ~12 ± 10% for k_(600)-CH_4. Hence reactive trace gas fluxes determined by conventional tracer methods at sea may be in error, prompting a need for detailed study of the role of the sea surface microlayer in gas exchange.
机译:[1]确定CH_4,N_2O和SF_6的表观传输速度(k_w)在密闭的实验室交换罐中进行的气体入侵和逃逸。调节储罐水(纯Milli-RO水或在Milli-RO中制备的人造海水)和/或储罐空气气体成分,并通过气相色谱监测随后的气体转移。导出的k_w转换为“表观k_(600)”,即20℃淡水中的CO_2值。对于CH_4,分析性约束排除了基于储罐空气测量值估算视在k_(600)的可能性。在一些实验中,我们添加了活的甲烷营养菌。在其他情况下,我们添加了化学灭活的甲烷氧化菌,非CH_4氧化剂(Vibrio)或细菌相关的表面活性剂作为对照。对于所有单独的对照,根据CH_4,N_2O或SF_6估算的表观k_(600)均无法区分。但是,侵入性估算总是超过规避性估算,这意味着一定程度的控制了气泡对气体的侵入。在甲烷氧化菌菌株之间,表观k600的估计值存在显着差异,可能反映了物种特异性表面活性剂的释放。对于气体入侵过程中的单个应变,根据CH_4,N_2O或SF_6估算的表观k_(600)是无法区分的,而在气体逃逸过程中,k_(600)-CH_4显着高于k_(600)-N_2O或k_(600) -SF_6,它们是相同的。因此,规避k_(600)-CH_4 / k_(600)-SF_6始终显着高于统一性,而侵入性k_(600)-CH_4 / k_(600)-SF_6与统一性没有显着差异。类似地,对照的k600-CH4 / k_(600)-SF_6和所有实验的k_(600)-N_2O / k_(600)-SF_6与单位无显着差异。我们的结果与通过在罐体微层中添加甲烷营养菌对CH4交换进行主动代谢控制相一致,k_(600)-CH_4的甲烷代谢增强了〜12±10%。因此,通过常规示踪剂方法在海上确定的反应性痕量气体通量可能是错误的,这需要对海表微层在气体交换中的作用进行详细研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号