...
首页> 外文期刊>Greenhouse Gases. Science and Technology >On the mobilization of metals by CO2 leakage into shallow aquifers: exploring release mechanisms by modeling field and laboratory experiments
【24h】

On the mobilization of metals by CO2 leakage into shallow aquifers: exploring release mechanisms by modeling field and laboratory experiments

机译:关于CO2泄漏到浅层含水层中的金属动员:通过对田间环境和实验室实验的模拟来探索释放机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The dissolution of CO2 in water leads to a pH decrease and a carbonate content increase in affected groundwater, which in turn can drive the mobilization of metals from sediments. The mechanisms of metal release postulated in various field and laboratory studies often differ. Drawing primarily on previously published results, we examine contrasting metal mobilization behaviors at two field tests and in one laboratory study, to investigate whether the same mechanisms could explain metal releases in these different experiments. Numerical modeling of the two field tests reveals that fast Ca-driven cation exchange (from calcite dissolution) can explain the release of most major and trace metal cations at both sites, and their parallel concentration trends. The dissolution of other minerals reacting more slowly (superimposed on cation exchange) also contributes to metal release over longer time frames, but can be masked by fast ambient groundwater velocities. Therefore, the magnitude and extent of mobilization depends not only on metal-mineral associations and sediment pH buffering characteristics, but also on groundwater flow rates, thus on the residence time of CO2-impacted groundwater relative to the rates of metal-release reactions. Sequential leaching laboratory tests modeled using the same metal-release concept as postulated from field experiments show that both field and laboratory data can be explained by the same processes. The reversibility of metal release upon CO2 degassing by de-pressurization is also explored using simple geochemical models, and shows that the sequestration of metals by resorption and re-precipitation upon CO2 exsolution is quite plausible and may warrant further attention. (C) 2015 Society of Chemical Industry and John Wiley & Sons, Ltd
机译:CO2在水中的溶解会导致受影响的地下水的pH值降低和碳酸盐含量增加,进而可以推动沉积物中金属的迁移。在各种领域和实验室研究中推测的金属释放机理通常不同。我们主要利用以前发表的结果,在两个现场测试和一项实验室研究中研究了不同的金属动员行为,以研究相同的机制是否可以解释这些不同实验中金属的释放。两次现场测试的数值模型表明,Ca驱动的快速阳离子交换(来自方解石溶解)可以解释两个位置上大多数主要和痕量金属阳离子的释放,以及它们平行的浓度趋势。其他矿物的溶解反应较慢(叠加在阳离子交换上)也有助于金属在更长的时间范围内释放,但可被快速的环境地下水速度掩盖。因此,动员的程度和程度不仅取决于金属-矿物的结合和沉积物的pH缓冲特性,还取决于地下水的流速,因此取决于相对于金属释放反应速率,受CO2影响的地下水的停留时间。使用与现场实验相同的金属释放概念建模的连续浸出实验室测试表明,现场和实验室数据都可以用相同的过程解释。还使用简单的地球化学模型探讨了通过减压将CO2脱气时金属释放的可逆性,并表明在CO2释放后通过吸收和再沉淀来隔离金属非常合理,可能需要进一步关注。 (C)2015年化学工业协会和John Wiley&Sons,Ltd

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号