...
首页> 外文期刊>Green chemistry >Synergistic enzymatic and microbial lignin conversion
【24h】

Synergistic enzymatic and microbial lignin conversion

机译:酶和微生物木质素的协同转化

获取原文
获取原文并翻译 | 示例

摘要

The utilization of lignin for fungible fuels and chemicals represents one of the most imminent challenges in modern biorefineries. However, bioconversion of lignin is highly challenging due to its recalcitrant nature as a phenolic heteropolymer. This study addressed the challenges by revealing the chemical and biological mechanisms for synergistic lignin degradation by a bacterial and enzymatic system, which significantly improved lignin consumption, cell growth and lipid yield. The Rhodococcus opacus cell growth increased exponentially in response to the level of laccase treatment, indicating the synergy between laccase and bacterial cells in lignin degradation. Other treatments like iron and hydrogen peroxide showed limited impact on cell growth. Chemical analysis of lignin under various treatments further confirmed the synergy between laccase and cells at the chemical level. P-31 nuclear magnetic resonance (NMR) suggested that laccase, R. opacus cell and Fenton reaction reagents promoted the degradation of different types of lignin functional groups, elucidating the chemical basis for the synergistic effects. 31P NMR further revealed that laccase treatment had the most significant impact for degrading the abundant chemical groups. The results were further confirmed by the molecular weight analysis and lignin quantification by the Prussian blue assay. The cell-laccase fermentation led to a 17-fold increase of lipid production. Overall, the study indicated that laccase and R. opacus can synergize to degrade lignin efficiently, likely through rapid utilization of monomers generated by laccase to promote the reaction toward depolymerization. The study provided a potential path for more efficient lignin conversion and development of consolidated lignin conversion.
机译:将木质素用于可替代燃料和化学药品是现代生物精炼厂迫在眉睫的挑战之一。然而,木质素的生物转化由于其作为酚类杂聚物的顽固性而极具挑战性。这项研究通过揭示细菌和酶系统协同降解木质素的化学和生物学机制,从而显着改善了木质素的消耗,细胞生长和脂质产量,从而解决了挑战。响应漆酶处理的水平,不透明红球菌细胞的生长呈指数增长,表明在木质素降解中漆酶和细菌细胞之间的协同作用。铁和过氧化氢等其他处理方法对细胞生长的影响有限。在各种处理下对木质素的化学分析进一步证实了在化学水平上漆酶和细胞之间的协同作用。 P-31核磁共振(NMR)表明,漆酶,不透明假单胞菌细胞和Fenton反应试剂促进了不同类型木质素官能团的降解,从而阐明了协同作用的化学基础。 31 P NMR进一步表明,漆酶处理对降解丰富的化学基团的影响最大。分子量分析和普鲁士蓝测定法对木质素的定量进一步证实了结果。细胞漆酶发酵导致脂质产量增加了17倍。总体而言,该研究表明漆酶和不透明红球菌可以有效地协同降解木质素,这可能是通过快速利用漆酶产生的单体来促进反应向解聚反应的结果。该研究提供了更有效的木质素转化和发展整合木质素转化的潜在途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号