首页> 外文期刊>Global change biology >A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations
【24h】

A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations

机译:在缺氧的土壤中通过全北极合成法生产CH4和CO2

获取原文
获取原文并翻译 | 示例
           

摘要

Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw.
机译:多年冻土融化可以通过改变土壤湿度来改变土壤环境,经常导致土壤饱和,向厌氧分解的转变以及植物群落的变化。这些变化以及先前冻结的有机物质的解冻可以改变多年冻土生态系统产生的温室气体的形式和大小。我们综合了来自多年冻土地区的北方和寒带土壤厌氧培养的现有甲烷(CH4)和二氧化碳(CO2)产量测量结果,以评估大规模控制厌氧性CO2和CH4产量,并比较了景观水平因子的相对重要性(例如,植被类型和景观位置),土壤属性(例如,pH,深度和土壤类型)和土壤环境条件(例如,温度和相对水位)。我们发现,有机土壤每克土壤碳的最大CH4产量比矿物土壤高出五倍。活性层(每年解冻和重新冻结的土壤)中土壤的最大CH4产量几乎是每克土壤碳的多年冻土的四倍,而没有多年冻土的地区的每克土壤碳的CH4产量是多年冻土的两倍。最大CH4和中位数厌氧CO2产量随深度而降低,而CO2:CH4产量随深度而增加。 CH4的最大产量在具有草本植物的土壤和持续或定期淹没的土壤中最高。该综合表明,在对多年冻土生态系统中的CH4产生进行建模时,需要考虑生物群落,景观位置和维管/苔藓植被类型,并建议需要进行长期厌氧培养以完全捕获CH4动态。我们的结果表明,随着北极和北方地区气候变暖,厌氧性CO2和CH4的产生速率将增加,这不仅是温度升高的结果,而且是由于植被的变化和永久冻土融化而增加的地面饱和度导致的。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号