首页> 外文期刊>Global change biology >Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests
【24h】

Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

机译:二氧化碳和臭氧的升高改变了北部温带森林的生产力和生态系统碳含量

获取原文
获取原文并翻译 | 示例
           

摘要

Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O-3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O-3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O-3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2)) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O-3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (Delta NPP/Delta N) decreased through time with further canopy development, the O-3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O-3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O-3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content
机译:美国中北部的三个年轻的北部温带森林群落暴露于高浓度二氧化碳(CO2)和对流层臭氧(O-3)的分解结合中达11年。在这里,我们报告了实验结束时对植物生物量和土壤进行的广泛采样的结果,这些采样使我们能够估算生态系统碳(C)含量和累积净初级生产力(NPP)。较高的CO2可使生态系统C含量增加11%,而较高的O-3可使生态系统C含量减少9%。各社区对碳含量的处理效果差异不大,CO2和O-3之间也没有有意义的相互作用。处理对生态系统C含量的影响主要是由于近地表矿物土壤和树木C的变化,特别是木质组织的差异。除矿质土壤外,累积NPP是生态系统C含量的有力预测指标(r(2)= 0.96)。升高的CO2使累积NPP增加39%,这是冠层氮(g N m(-2))增加28%和N生产率(NPP /冠层N)增加28%的结果。相反,由于冠层氮含量降低了21%,升高的O-3将NPP降低了10%,但并未影响氮的生产率。因此,随着冠层N的边际影响(Delta NPP / Delta N)随着冠层的进一步发展而随时间减少,O-3对NPP的影响逐渐消失。在矿物土壤中,在O-3升高的情况下,土壤顶部0.1 m的碳含量较低,而在CO2升高的情况下,深度在0.1至0.2 m的土壤碳含量较低。总体而言,这些结果表明,升高的CO2可能会导致NPP持续增加,而O-3升高对NPP的长期影响将小于预期。但是,土壤碳的变化并不能很好地理解,并且限制了我们预测生态系统碳含量变化的能力

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号