...
首页> 外文期刊>Global change biology >Temperature-dependent shifts in herbivore performance and interactions drive nonlinear changes in crop damages.
【24h】

Temperature-dependent shifts in herbivore performance and interactions drive nonlinear changes in crop damages.

机译:草食动物性能和相互作用的温度依赖性变化驱动了农作物损害的非线性变化。

获取原文
获取原文并翻译 | 示例

摘要

Understanding how and to what extent the influence of temperature on physiological performance scales up to interspecific interactions and process rate patterns remains a major scientific challenge faced by ecologists. Here, we combined approaches developed by two conceptual frameworks in ecology, the stress-gradient hypothesis (SGH), and the biodiversity-ecosystem functioning relationship (B-EF), to test the hypothesis that interspecific difference in thermal performance modulates multiple species interactions along a thermal stress (SGH) and the subsequent richness effects on process rates (B-EF). We designed an experiment using three species of herbivorous agricultural pests with different thermal optima for which we determined how temperature influences the direction and the strength of interaction and subsequent richness effects on crop damage (7 species interaction treatments x 6 temperature treatments x 10 replicates). We showed that both biotic interactions and species richness effects drive variations in crop damages along a thermal stress gradient, and thus have the potential to drive agro-system responses to climate change. To help explain and generalize underlying mechanisms of richness effects on process rates, we further proposed a conceptual model that views interaction outcomes as shifting between positive and negative along a thermal stress depending on species thermal optima. Overall, our study demonstrates that nonlinear effects of temperature on process rates must be a major concern in terms of prediction and management of the consequences of global warming.Digital Object Identifier http://dx.doi.org/10.1111/gcb.12104
机译:理解温度对生理性能的影响如何以及在多大程度上扩展到种间相互作用和过程速率模式仍然是生态学家面临的重大科学挑战。在这里,我们结合了由生态学的两个概念框架开发的方法,即应力梯度假设(SGH)和生物多样性-生态系统功能关系(B-EF),以检验以下假设:热性能的种间差异调节多个物种之间的相互作用热应力(SGH)和随后的浓稠度对加工速率(B-EF)的影响。我们设计了一个实验,使用三种具有不同热最适性的草食性农业害虫,我们确定了温度如何影响相互作用的方向和强度以及随后的丰富度对作物危害的影响(7种相互作用处理x 6个温度处理x 10个重复)。我们表明,生物相互作用和物种丰富性效应都沿着热应力梯度驱动作物损害的变化,因此具有驱动农业系统应对气候变化的潜力。为了帮助解释和概括丰富度对加工速率的影响的潜在机制,我们进一步提出了一个概念模型,该模型将相互作用的结果视为沿着物种的最佳温度沿着热应力在正负之间移动。总的来说,我们的研究表明,温度对过程速率的非线性影响必须成为预测和管理全球变暖后果的主要考虑因素。数字对象标识符http://dx.doi.org/10.1111/gcb.12104

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号