...
首页> 外文期刊>Global change biology >Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature.
【24h】

Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature.

机译:暴露于升高的CO 2 浓度和土壤温度的稻田中当季光合产物甲烷和土壤CO 2 的产生。

获取原文
获取原文并翻译 | 示例

摘要

Quantification of rhizodeposition (root exudates and root turnover) represents a major challenge for understanding the links between above-ground assimilation and below-ground anoxic decomposition of organic carbon in rice paddy ecosystems. Free-air CO2 enrichment (FACE) fumigating depleted 13CO2 in rice paddy resulted in a smaller 13C/12C ratio in plant-assimilated carbon, providing a unique measure by which we partitioned the sources of decomposed gases (CO2 and CH4) into current-season photosynthates (new C) and soil organic matter (old C). In addition, we imposed a soil-warming treatment nested within the CO2 treatments to assess whether the carbon source was sensitive to warming. Compared with the ambient CO2 treatment, the FACE treatment decreased the 13C/12C ratio not only in the rice-plant carbon but also in the soil CO2 and CH4. The estimated new C contribution to dissolved CO2 was minor (ca. 20%) at the tillering stage, increased with rice growth and was about 50% from the panicle-formation stage onwards. For CH4, the contribution of new C was greater than for heterotrophic CO2 production; ca. 40-60% of season-total CH4 production originated from new C with a tendency toward even larger new C contribution with soil warming, presumably because enhanced root decay provided substrates for greater CH4 production. The results suggest a fast and close coupling between photosynthesis and anoxic decomposition in soil, and further indicate a positive feedback of global warming by enhanced CH4 emission through greater rhizodeposition.
机译:根际沉积的定量(根系分泌物和根系周转)是理解稻田生态系统中地上同化和地下有机碳缺氧分解之间联系的主要挑战。稻田中自由空气中的CO 2 富集熏蒸耗尽 13 CO 2 导致较小的 13 植物同化碳中的C / 12 C比,提供了一种独特的方法,可用来划分分解气体的来源(CO 2 和CH 4 )转化为当前季节的光合产物(新的C)和土壤有机质(旧的C)。另外,我们在CO 2 处理中实施了土壤保温处理,以评估碳源是否对变暖敏感。与环境CO 2 处理相比,FACE处理不仅降低了水稻植株碳中的 13 C / 12 C比,在土壤CO 2 和CH 4 中。在分er期,估计新的碳对溶解的CO 2 的贡献很小(约20%),随着水稻的生长而增加,从穗形成阶段开始约为50%。对于CH 4 ,新碳的贡献大于异养CO 2 的产生; ca. CH 4 季节总产量的40-60%来自新的C,随着土壤变暖,新的C趋向于更大,这可能是由于增强的根部腐烂提供了更大的CH 4 < / sub>生产。研究结果表明土壤光合作用与缺氧分解之间存在快速紧密的联系,并进一步表明通过更大的根际沉积增加了CH 4 的排放,对全球变暖有积极的反馈作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号