...
首页> 外文期刊>Global change biology >Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition
【24h】

Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition

机译:大气中二氧化碳含量的增加和氮素的沉积增加了北部温带林下林木的幼苗存活率

获取原文
获取原文并翻译 | 示例

摘要

We tested the main and interactive effects of elevated carbon dioxide concentration ([CO2]), nitrogen (N), and light availability on leaf photosynthesis, and plant growth and survival in understory seedlings grown in an N-limited northern hardwood forest. For two growing seasons, we exposed six species of tree seedlings (Betula papyrifera, Populus tremuloides, Acer saccharum, Fagus grandifolia, Pinus strobus, and Prunus serotina) to a factorial combination of atmospheric CO2 (ambient, and elevated CO2 at 658 mu mol CO2 mol(-1)) and N deposition (ambient and ambient +30 kg N ha(-1) yr(-1)) in open-top chambers placed in an understory light gradient. Elevated CO2 exposure significantly increased apparent quantum efficiency of electron transport by 41% (P < 0.0001), light-limited photosynthesis by 47% (P < 0.0001), and light-saturated photosynthesis by 60% (P < 0.003) compared with seedlings grown in ambient [CO2]. Experimental N deposition significantly increased light-limited photosynthesis as light availability increased (P < 0.037). Species differed in the magnitude of light-saturated photosynthetic response to elevated N and light treatments (P < 0.016). Elevated CO2 exposure and high N availability did not affect seedling growth; however, growth increased slightly with light availability (R-2=0.26, P < 0.0001). Experimental N deposition significantly increased average survival of all species by 48% (P < 0.012). However, seedling survival was greatest (85%) under conditions of both high [CO2] and N deposition (P < 0.009). Path analysis determined that the greatest predictor for seedling survival in the understory was total biomass (R-2=0.39, P < 0.001), and that carboxylation capacity (V-cmax) was a better predictor for seedling growth and survival than maximum photosynthetic rate (A(max)). Our results suggest that increasing [CO2] and N deposition from fossil fuel combustion could alter understory tree species recruitment dynamics through changes in seedling survival, and this has the potential to alter future forest species composition.
机译:我们测试了二氧化碳浓度([CO2]),氮(N)和光的利用率对叶片光合作用以及在有限氮的北部硬木林中生长的林下幼苗的植物生长和存活的主要和交互作用。在两个生长季节中,我们使六种树苗(桦木,胡杨,枫木,大叶青冈,松花tro和李子血清)暴露于大气CO2(环境和在658μmol CO2下升高的CO2)的分解结合下mol(-1))和N沉积(环境和周围环境+30 kg N ha(-1)yr(-1))放置在地下光梯度下的敞顶室内。与种植的幼苗相比,增加的CO2暴露量显着提高了电子传输的表观量子效率,提高了41%(P <0.0001),光限制光合作用提高了47%(P <0.0001),光饱和光合作用提高了60%(P <0.003)。在环境[CO2]中。随着光利用率的提高,实验性N沉积显着增加了限光光合作用(P <0.037)。物种对提高的氮和光处理的光饱和光合作用的大小有所不同(P <0.016)。较高的二氧化碳暴露量和高氮素利用率并未影响幼苗的生长。然而,随着光的可用性,生长略有增加(R-2 = 0.26,P <0.0001)。实验性氮沉积显着提高了所有物种的平均存活率48%(P <0.012)。然而,在高[CO2]和氮沉降条件下,幼苗的存活率最高(85%)(P <0.009)。路径分析确定,下层幼苗存活的最大预测指标是总生物量(R-2 = 0.39,P <0.001),并且羧化能力(V-cmax)比最大光合速率更好地预测幼苗的生长和存活。 (A(最大))。我们的结果表明,通过化石燃料燃烧增加[CO2]和N的沉积,可以通过改变幼苗的存活率来改变林下树种的招聘动态,这有可能改变未来的森林树种组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号