...
首页> 外文期刊>Global change biology >Climatic controls on the carbon and water balances of a boreal aspen forest, 1994-2003
【24h】

Climatic controls on the carbon and water balances of a boreal aspen forest, 1994-2003

机译:1994-2003年,气候控制对北方白杨林碳水平衡的影响

获取原文
获取原文并翻译 | 示例

摘要

The carbon and water budgets of boreal and temperate broadleaf forests are sensitive to interannual climatic variability and are likely to respond to climate change. This study analyses 9 years of eddy-covariance data from the Boreal Ecosystem Research and Monitoring Sites (BERMS) Southern Old Aspen site in central Saskatchewan, Canada and characterizes the primary climatic controls on evapotranspiration, net ecosystem production (F-NEP), gross ecosystem photosynthesis (P) and ecosystem respiration (R). The study period was dominated by two climatic extremes: extreme warm and cool springs, which produced marked contrasts in the canopy duration, and a severe, 3-year drought. Annual F-NEP varied among years from 55 to 367 g C m(-2) (mean 172, SD 94). Interannual variability in F-NEP was controlled primarily by factors that affected the R/P ratio, which varied between 0.74 and 0.96 (mean 0.87, SD 0.06). Canopy duration enhanced P and F-NEP with no apparent effect on R. The fraction of annual photosynthetically active radiation (PAR) that was absorbed by the canopy foliage varied from 38% in late leaf-emergence years to 51% in early leaf-emergence years. Photosynthetic light-use efficiency (mean 0.0275, SD 0.026 mol C mol(-1) photons) was relatively constant during nondrought years but declined with drought intensity to a minimum of 0.0228 mol C mol(-1) photons during the most severe drought year. The impact of drought on F-NEP varied with drought intensity. Years of mild-to-moderate drought suppressed R while having little effect on P, so that F-NEP was enhanced. Years of severe drought suppressed both R and P, causing either little change or a subtle reduction in F-NEP. The analysis produced new insights into the dominance of canopy duration as the most important biophysical control on F-NEP. The results suggested a simple conceptual model for annual F-NEP in boreal deciduous forests. When water is not limiting, annual P is controlled by canopy duration via its influence on absorbed PAR at constant light-use efficiency. Water stress suppresses P, by reducing light-use efficiency, and R, by limiting growth and/or suppressing microbial respiration. The high photosynthetic light-use efficiency showed this site to be a highly productive boreal deciduous forest, with properties similar to many temperate deciduous forests.
机译:寒带和温带阔叶林的碳和水预算对年际气候变化敏感,并可能对气候变化做出反应。这项研究分析了加拿大萨斯喀彻温省中部北部阿斯蓬南部的北方生态系统研究和监测站(BERMS)的9年涡度协方差数据,并描述了蒸散量,净生态系统产量(F-NEP),总生态系统的主要气候控制特征光合作用(P)和生态系统呼吸(R)。研究期主要受两个气候极端因素的影响:极度温暖和凉爽的泉水,在冠层持续时间上形成了明显的对比,以及严重的3年干旱。年度F-NEP在55至367 g C m(-2)之间变化(平均值172,SD 94)。 F-NEP的年际变化主要受影响R / P比率的因素控制,这些因素在0.74和0.96之间变化(平均值0.87,SD 0.06)。冠层持续时间增强了P和F-NEP,但对R没有明显影响。冠层叶片吸收的年度光合有效辐射(PAR)的比例从叶萌芽后期的38%到叶萌芽初期的51%不等。年份。在非干旱年份,光合光利用效率(平均值为0.0275,SD为0.026 mol C mol(-1)光子)相对恒定,但在干旱最严重的年份随干旱强度下降至最小为0.0228 mol C mol(-1)光子。 。干旱对F-NEP的影响随干旱强度而变化。多年的轻度至中度干旱抑制了R,而对P影响不大,因此增强了F-NEP。多年的严重干旱抑制了磷和磷,导致F-NEP几乎没有变化或略有下降。该分析对冠层持续时间的优势产生了新的见解,冠层持续时间是F-NEP上最重要的生物物理控制。结果提出了一种简单的概念模型,用于北方落叶林的年度F-NEP。当水不受限制时,年P受冠层持续时间的影响,在恒定的光利用效率下,其对吸收的PAR的影响。水分胁迫通过降低光利用效率来抑制P,而通过限制生长和/或抑制微生物呼吸来抑制R。高光合光利用效率表明该地区是高产的北方落叶林,其性质与许多温带落叶林相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号