...
首页> 外文期刊>Global change biology >Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling
【24h】

Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling

机译:暴露于高二氧化碳下9年后,牧场系统中的土壤和植物碳分解:对碳循环和建模的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long-term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate-soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha(-1) yr(-1)), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low-N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the C-13-CO2 signature, reflected the turnover times of SOM-C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate-SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.
机译:大气中二氧化碳浓度升高可能通过改变植物材料的质量及其对土壤微生物活性的影响来改变分解速率。这项研究检查了在较高的CO2下产生的植物材料分解与在环境CO2下产生的植物材料分解是否不同。此外,一项长期实验提供了独特的机会,以评估在气候-土壤有机质(SOM)耦合模型中进行的有关CO浓度升高时碳循环的假设。在较高水平(60 Pa)和环境CO2下以两种氮肥水平(140 vs. 560 kg ha(-1)yr(-1))产生的白三叶和黑麦草植物材料在土壤中培养90天。用于孵化的土壤和植物材料在自由空气二氧化碳富集条件下暴露于环境和升高的CO2中,并已接受了9年的氮肥。多年生落叶松和圆叶紫苏植物材料的分解速率不受大气中二氧化碳浓度升高和氮肥施用速率的影响。在升高的CO 2下,紫苏植物材料中C:N比例的增加不会影响植物材料的分解速率。如果在长时间升高的CO2中发生了土壤微生物动力学变化,则这些变化不会反映在植物材料的分解速率中。暴露于高浓度的CO2后,只有低氮施肥处理条件下,无论添加或不添加植物材料,紫苏葡萄在土壤呼吸作用下均得到增强。土壤呼吸的这种增加没有反映在紫苏土壤中微生物生物量的增加上。 C-13-CO2信号表明,旧的和新隔离的C对土壤呼吸的贡献反映了多池SOM模型所描述的SOM-C库的周转时间。结果并未证实在耦合气候-SOM模型中使用的CO2增加后在C循环中诱发负反馈的假设。此外,这项研究表明没有证据表明在额外的氮肥施肥后,C周期出现了正反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号