首页> 外文期刊>Gondwana research: international geoscience journal >Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis
【24h】

Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis

机译:碎屑锆石U-Pb年龄和Hf同位素限制了华南地区华南前寒武纪大陆壳的生成和再造

获取原文
获取原文并翻译 | 示例
       

摘要

The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U-Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~2485 Ma, ~1853 Ma and ~970 Ma (counting for ~10%, ~16% and ~24% of all analyses, respectively), and four subordinate peaks at ~1426 Ma, ~1074 Ma, ~780 Ma and ~588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~1.89-1.83 Ga, ~1.43 Ga, ~1.0-0.98 Ga and ~0.82-0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~2.49 Ga and ~0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDM C) between ~4.19 Ga and ~0.81 Ga, and the calculated εHf(t) values between?40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~1.9 and ~0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~1.9-1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~1.0 Ga. Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~1.9-1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~1.0-0.89 Ga. The Laurentia-Cathaysia-Yangtze-Australia-East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~0.6-0.55 Ga detrital zircons in Cathaysia andWest Yangtze have exclusively high crustal incubation time of N300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including TethyanHimalaya, High Himalaya,Qiangtang and Indochina. The united South China-Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a "Pan-African" collisional orogen.
机译:华南地块包括扬子和华夏地块,是东亚最大的前寒武纪地块之一。然而,人们对华夏地块的早期历史了解甚少,这在很大程度上是由于生代多相造山作用和岩浆作用的密集而广泛的改造,强烈地覆盖和掩盖了前寒武纪的许多地质记录。在本文中,我们使用碎屑锆石U-Pb年龄和Hf同位素数据集作为描绘华夏区块早期历史的替代方法。从许多(超)沉积样品和河砂中汇编的已发布的4041前寒武纪碎屑锆石年龄表现出较广的年龄谱,在〜2485 Ma,〜1853 Ma和〜970 Ma出现了三个主要峰(占〜10%,〜分别占所有分析的16%和〜24%),以及四个次要峰,分别位于〜1426 Ma,〜1074 Ma,〜780 Ma和〜588 Ma。在华夏已知的火成岩中,七个碎屑锆石年龄峰中的五个与大约1.89-1.83 Ga,〜1.43 Ga,〜1.0-0.98 Ga和〜0.82-0.72 Ga的结晶年龄大致一致,而随着年龄的增长尚未发现约2.49 Ga和〜0.59 Ga中的1个。来自1085个碎屑锆石的Hf同位素数据产生的Hf模型年龄(TDM C)在〜4.19 Ga和〜0.81 Ga之间,计算出的εHf(t)值在?40.2和14.4之间。太古宙碎屑锆石的形状完全是椭圆形,内部纹理复杂,这表明它们来自长距离运输和来自异国的太古宙大陆的强烈磨损。相比之下,年龄在〜1.9和〜0.8 Ga之间的大多数碎屑锆石为半面体晶体,属于半面体晶体,表明通过短距离运输从其来源中局部衍生。华夏地区最古老的地壳基底岩石很可能是由幼年地壳的产生和晚元古生代晚期〜1.9-1.8 Ga的回收的太古宙成分的再加工形成的,而不是先前推测的太古宙。大陆壳的再造和再循环可能是中元古代至新元古代的华夏地壳演化的主要过程,在约1.0 Ga的中间时期有大量的幼年地壳发生。华夏地块的前寒武纪地壳演化与遗传有关到超大陆周期。通过比较来自华夏的碎屑锆石数据和其他大陆的锆石数据,并整合多条地质证据,我们将华夏地块解释为超大陆哥伦比亚/努纳组装时南极东部,劳伦蒂亚和澳大利亚之间的造山带,速度约为1.9- 1.8 Ga。在四宝造山运动中,在约1.0-0.89 Ga的情况下,将Cathaysia块与扬子块合并,形成统一的华南块。Laurentia-Cathaysia-Yangtze-Australia-East南极洲连接为古位置提供了最佳解决方案超大陆罗丹尼亚州的华夏地区。在华夏地区和扬子西地区大量的约0.6-0.55 Ga碎屑锆石具有很高的地壳潜伏时间N300 Ma,表明从地壳返工产生的岩浆中结晶出来。这个碎屑锆石种群与来自冈瓦纳的许多地体(包括特提斯喜马拉雅山,喜马拉雅山,高唐山和印度支那)的类似年龄的锆石种群比较好。统一的华南-印度支那大陆曾经是冈瓦纳大陆不可分割的一部分,通过“泛非”碰撞造山带与印度北部相连。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号