首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Evaluation of a rapid hybrid spectral-spatial domain 3D forward-modeling approach for loop-loop electromagnetic induction quadrature data acquired in low-induction-number environments
【24h】

Evaluation of a rapid hybrid spectral-spatial domain 3D forward-modeling approach for loop-loop electromagnetic induction quadrature data acquired in low-induction-number environments

机译:对低感应数环境中获取的环-环电磁感应正交数据的快速混合频谱空间域3D正向建模方法的评估

获取原文
获取原文并翻译 | 示例
           

摘要

When exploring subsurface environments using electromagnetic (EM) induction (EMI) tools, approximate forwardmodeling methods based on a homogeneous half-space kernel have been extensively evaluated in the past. For large-scale exploration methods, such as magnetotellurics, marine EM, airborne EM, transient EM, and large offset loop-loop harmonic EM, such forward-modeling approaches are limited because the kernel depends strongly on the subsurface distribution of electrical conductivity. However, the response of small portable EMI loop-loop sensors applied in a low-induction number (LIN) context are known to be more linearly related to the true distribution of electrical conductivity. Thus, data collected using such sensors are more adapted to an approximate forwardmodeling with a conductivity-independent kernel. We have evaluated the bias of such an approximate modeling for the case of portable multiconfiguration system measurements in 1D, 2D, and 3D contexts. Our result shows that the approximate approach tends to underestimate the conductivity of more conductive targets but is able to reproduce the right structural information. Compared with previous algorithms presented in the literature, we solved the approximate forward-modeling problem in the hybrid spectral-spatial domain to speed up the computation. Considering the level of accuracy in structural modeling as well as the computational efficiency of our hybrid spectral-spatial approach, we conclude that this method is especially suitable for near-surface, large-scale mapping applications in LIN environments as typically encountered in soil sciences and archaeological studies. For such applications, our approach can be implemented in rapid multi-channel deconvolution procedures.
机译:在使用电磁(EM)感应(EMI)工具探索地下环境时,过去已经广泛评估了基于均匀半空间核的近似正向建模方法。对于大规模探测方法,例如大地电磁,海洋电磁,机载电磁,瞬变电磁和大偏移环-回路谐波电磁,这种前向建模方法受到限制,因为内核强烈依赖于电导率的地下分布。但是,已知在低电感数(LIN)情况下应用的小型便携式EMI环路传感器的响应与电导率的真实分布线性相关。因此,使用此类传感器收集的数据更适合于具有独立于电导率的内核的近似正向建模。我们已经针对1D,2D和3D上下文中的便携式多配置系统测量情况评估了这种近似建模的偏差。我们的结果表明,近似方法往往会低估更多导电目标的电导率,但能够再现正确的结构信息。与文献中提出的先前算法相比,我们解决了混合频谱空间域中的近似正向建模问题,以加快计算速度。考虑到结构建模的准确性水平以及我们的混合光谱空间方法的计算效率,我们得出结论,该方法特别适合LIN环境中近地,大规模制图的应用,这在土壤科学和土壤学中通常会遇到。考古学研究。对于此类应用,我们的方法可以在快速多通道反卷积过程中实现。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号