首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example
【24h】

Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example

机译:使用非结构化网格的自适应有限元建模:2D大地电磁示例

获取原文
获取原文并翻译 | 示例
       

摘要

Existing numerical modeling techniques commonly used for electromagnetic (EM) exploration are bound by the limitations of approximating complex structures using a rectangular grid. A more flexible tool is the adaptive finite-element (FE) method using unstructured grids. Composed of irregular triangles, an unstructured grid can readily conform to complicated structural boundaries. To ensure numerical accuracy, adaptive refinement using an a posteriori error estimator is performed iteratively to refine the grid where solution accuracy is insufficient. Two recently developed asymptotically exact a posteriori error estimators are based on a superconvergent gradient recovery operator. The first relies solely on the normed difference between the recovered gradients and the piecewise constant FE gradients and is effective for lowering the global error in the FE solution. For many problems, an accurate solution is required only in a few discrete regions and a more efficient error estimator is possible by considering the local influence of errors from coarse elements elsewhere in the grid. The second error estimator accomplishes this by using weights determined from the solution to an appropriate dual problem to modify the first error estimator. Application of these methods for 2D magnetotelluric (MT) modeling reveals, as expected, that the dual weighted error estimator is far more efficient in achieving accurate MT responses. Refining about 15% of elements per iteration gives the fastest convergence rate. For a given refined grid, the solution error at higher frequencies varies in proportion to the skin depth, requiring refinement about every two decades of frequency. The transverse electric (TE) and transverse magnetic (TM) modes exhibit different field behavior, and refinement should consider the effects of both. An example resistivity model of seafloor bathymetry underlain by complex salt intrusions and dipping and faulted sedimentary layers illustrates the benefits of this new technique.
机译:通常用于电磁(EM)勘探的现有数值建模技术受到使用矩形网格近似复杂结构的局限性的约束。一种更灵活的工具是使用非结构化网格的自适应有限元(FE)方法。由不规则三角形组成的非结构化网格可以很容易地符合复杂的结构边界。为了确保数值精度,使用后验误差估计器反复进行自适应细化,以在求解精度不足的情况下细化网格。两个最近开发的渐近精确的后验误差估计器基于超收敛梯度恢复算子。第一个仅依赖于恢复梯度与分段恒定FE梯度之间的范数差异,对于降低FE解中的整体误差有效。对于许多问题,仅在几个离散的区域中才需要一种精确的解决方案,并且通过考虑网格中其他地方的粗略元素产生的误差的局部影响,可以使用更有效的误差估计器。第二误差估计器通过使用从解决方案确定的权重到适当的对偶问题来修改第一误差估计器,以实现此目的。这些方法在二维大地电磁(MT)建模中的应用表明,正如预期的那样,双重加权误差估计器在实现精确的MT响应方面效率更高。每次迭代精炼约15%的元素可提供最快的收敛速度。对于给定的精炼网格,较高频率下的求解误差与趋肤深度成比例变化,需要每隔二十个频率精炼一次。横向电(TE)模式和横向磁(TM)模式表现出不同的场行为,因此精化时应考虑这两种情况的影响。海底测深法的一个示例性电阻率模型,该模型是由复杂的盐岩侵入,浸水和断层沉积层所致,说明了这项新技术的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号