首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids
【24h】

Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids

机译:在非结构化网格上使用有限体积和有限元方法对重力数据进行正向建模

获取原文
获取原文并翻译 | 示例
           

摘要

Minimum-structure inversion is one of the most effective tools for the inversion of gravity data. However, the standard Gauss-Newton algorithms that are commonly used for the minimization procedure and that employ forward solvers based on analytic formulas require large memory storage for the formation and inversion of the involved matrices. An alternative to the analytical solvers are numerical ones that result in sparse matrices. This sparsity suits gradient-based minimization methods that avoid the explicit formation of the inversion matrices and that solve the system of equations using memory-efficient iterative techniques. We have developed several numerical schemes for the forward modeling of gravity data using the finite-element and finite-volume methods on unstructured grids. In the finite-volume method, a Delaunay tetrahedral grid and its dual Vorono? grid are used to find the primary solution (i.e., gravitational potential) at the centers and vertices of the tetrahedra, respectively (cell-centered and vertex-centered schemes). In the finite-element method, Delaunay tetrahedral grids are used to develop linear and quadratic finite-element schemes. Different techniques are used to recover the vertical component of gravitational acceleration from the gravitational potential. In the finite-volume scheme, a differencing method is used; in the finite-element method, basis functions are used. The capabilities of the finite-volume and finite-element schemes were tested on simple and realistic synthetic examples. The results showed that the quadratic finite-element scheme is the most accurate but also the most computationally demanding scheme. The best trade-offs between accuracy and computational resource requirement were achieved by the linear finite-element and vertex-centered finite-volume schemes.
机译:最小结构反演是重力数据反演最有效的工具之一。但是,通常用于最小化过程并采用基于解析公式的正向求解器的标准高斯-牛顿算法需要大容量的存储器来存储和转换所涉及的矩阵。解析式求解器的替代方法是数值求解器,可导致矩阵稀疏。这种稀疏性适合基于梯度的最小化方法,这些方法可以避免显式形成反演矩阵,并且可以使用内存有效的迭代技术来求解方程组。我们已经针对非结构化网格上的有限元和有限体积方法开发了几种用于重力数据正向建模的数值方案。在有限体积方法中,Delaunay四面体网格及其对偶Vorono?网格用于分别在四面体的中心和顶点(单元居中和顶点居中的方案)中找到主要解(即重力势)。在有限元方法中,使用Delaunay四面体网格来开发线性和二次有限元方案。使用不同的技术从重力势中恢复重力加速度的垂直分量。在有限体积方案中,使用差分方法。在有限元方法中,使用基函数。在简单而现实的综合示例中测试了有限体积和有限元方案的功能。结果表明,二次有限元方案是最准确的,也是计算量最大的方案。通过线性有限元和以顶点为中心的有限体积方案,可以在精度和计算资源需求之间取得最佳平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号