首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions
【24h】

Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions

机译:时移,实验室岩石物理学用于表征和监测流体-岩石相互作用的最新进展

获取原文
获取原文并翻译 | 示例
           

摘要

Monitoring thermo-chemo-mechanical processes geophysically - e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system - raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is understanding the evolution of seismic properties together with reactive transport because rock properties evolve as a result of chemical reactions and vice versa. Capturing this coupling experimentally is one of the missing elements in the existing literature. This paper describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. This paper has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling. Data observation included time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it was the original rock microstructure and its response to stress that ultimately defined how solution-transfer and rock compaction feed back upon each other. The change in pore volume to the applied stress, the permeability characterizing the formation, and the reactive transport of phases characterized by a high surface area were strongly coupled during injection, controlling how velocity evolved. In less stiff rocks, rock-fluid interactions led to grain-slip-driven compaction and a consequent decrease in velocity. In tight and stiff rocks, rock-fluid interactions led to minimal compaction, a larger increase in permeability, and crack opening. Nevertheless, the change in velocity of these tight rocks was almost negligible.
机译:从地球物理上监视热化学机械过程-例如,流体处置或存储,储层的热和化学增产或仅进入新系统的天然流体-由于流体-岩石化学相互作用的可能性以及我们有限的能力而受到关注。解释耦合过程的地球物理特征。缺少的环节之一是了解地震性质与反应性输运的演化,因为岩石性质是化学反应的结果,反之亦然。实验上捕获这种耦合是现有文献中缺少的要素之一。本文介绍了岩石物理实验的最新进展,以了解溶解诱导的压实对声速,孔隙度和渗透率的影响。本文具有双重目的:了解对岩石微观结构进行永久性修改的机制,并提供丰富的实验信息,以指导新的模拟和岩石建模的制定。数据观察包括延时实验和成像跟踪传输和弹性特性,岩石微观结构以及渗透岩石的流体的pH值和化学成分。结果表明,去除高表面积,矿物相(如微晶方解石和粘土)似乎是造成溶解诱导压实的主要原因。尽管如此,原始的岩石微观结构及其对应力的响应最终决定了溶液转移和岩石压实如何相互反馈。在注入过程中,孔隙体积对所施加应力的变化,表征地层的渗透性以及以高表面积为特征的相的反应性输运强烈耦合,从而控制了速度的演变。在刚度较小的岩石中,岩石与流体之间的相互作用导致了滑移驱动的压实作用,并因此导致速度降低。在致密而坚硬的岩石中,岩石与流体的相互作用导致压实最小,渗透率增加较大以及裂缝张开。然而,这些致密岩石的速度变化几乎可以忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号