...
首页> 外文期刊>Bioinspiration & biomimetics >How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing
【24h】

How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

机译:机翼运动学如何影响机器人蝙蝠翼的功率需求和空气动力产生

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics.
机译:蝙蝠表现出各种各样的行为,需要不同数量的空气动力。为了控制和调节空气动力,蝙蝠改变了机翼的运动学,进而改变了机翼运动所需的动力。蝙蝠和其他拍打动物可以使用许多运动机制来增加空气动力,例如:增加机翼的频率或振幅。但是,我们不知道这些不同的运动机制之间的能量成本是否存在差异。为了评估跨不同隔离运动学参数的机械动力输入和空气动力输出之间的关系,我们对机器人蝙蝠翼进行了编程,使其在一系列运动学参数上拍动,并测量了空气动力和机械动力。我们系统地改变了五个运动学参数:机翼频率,机翼幅度,冲程平面角,下冲程比和机翼折叠。运动学值基于自由飞行的Cynopterus brachyotis(机器人所基于的物种)的观测值。我们描述了升力,推力和功率如何随每个运动学变量的增加而变化。我们比较了通过在肩部控制的四个运动机构产生额外力所产生的动力成本,并显示了所有四个机构需要大致相同的动力才能产生给定力。该结果表明,没有任何一个参数比其他参数具有优势。最后,我们证明了在上冲程期间缩回机翼降低了襟翼的动力需求并增加了净升力产生,但降低了净推力产生。这些结果与对短臂梭菌进行的研究很好地比较,从而提供了对自然飞行运动学的认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号