...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Linear iterative refinement method for the rapid simulation of borehole nuclear measurements: Part I - Vertical wells
【24h】

Linear iterative refinement method for the rapid simulation of borehole nuclear measurements: Part I - Vertical wells

机译:快速模拟井孔核测量的线性迭代优化方法:第一部分-垂直井

获取原文
获取原文并翻译 | 示例
           

摘要

As a result of its high numerical accuracy and versatility to include complex tool configurations and arbitrary spatial distributions of material properties, the Monte Carlo method is the foremost numerical technique used to simulate borehole nuclear measurements. Although recent advances in computer technology have considerably reduced the computer time required by Monte Carlo simulations of borehole nuclear measurements, the efficiency of the method is still not sufficient for estimation of layer-by-layer properties or combined quantitative interpretation with other borehole measurements. We develop and successfully test a new linear iterative refinement method to simulate nuclear borehole measurements accurately and rapidly. The approximation stems from Monte Carlo-derived geometric response factors, referred to as flux sensitivity functions (FSFs), for specific density and neutron-tool configurations. Our procedure first invokes the integral representation of Boltzmann's transport equation to describe the detector response from the flux of particles emitted by the radioactive source. Subsequently, we use theMonte Carlo N-particle (MCNP) code to calculate the associated detector response function and the particle flux included in the integral form of Boltzmann's equation. The linear iterative refinement method accounts for variations of the response functions attributable to local perturbations when numerically simulating neutron and density porosity logs. We quantify variations in the FSFs of neutron and density measurements from borehole environmental effects and spatial variations of formation properties. Simulations performed with the new approximations yield errors in the simulated value of density of less than 0.02 g/cm(3) with respect to Monte Carlo-simulated logs. Moreover, for the case of radial geometric factor of density, we observe a maximum shift of 3 cm at 90% of the total sensitivity as a result of realistic variations of formation density. For radial variation of neutron properties (migration length), the maximum change in the radial length of investigation is 10.4 cm. Neutron porosity values simulated with the new approximation differ by less than 10% from Monte Carlo simulations. The approximations enable the simulation of borehole nuclear measurements in seconds of CPU time compared to several hours with MCNP.
机译:由于其较高的数值精度和多功能性(包括复杂的工具配置和任意的材料属性空间分布),蒙特卡洛方法是用于模拟井壁核测量的最重要的数值技术。尽管计算机技术的最新进展已大大减少了井孔核测量的蒙特卡洛模拟所需的计算机时间,但该方法的效率仍然不足以估计层间特性或将定量解释与其他井孔测量结合起来。我们开发并成功测试了一种新的线性迭代精化方法,可以准确,快速地模拟核孔测量。对于特定的密度和中子工具配置,该近似值源自于蒙特卡洛得出的几何响应因子,称为通量灵敏度函数(FSF)。我们的程序首先调用Boltzmann输运方程的积分表示,以描述探测器从放射源发出的粒子通量得到的响应。随后,我们使用蒙特卡罗N粒子(MCNP)代码来计算相关的探测器响应函数和玻耳兹曼方程积分形式中包含的粒子通量。线性迭代细化方法考虑了数值模拟中子和密度孔隙度测井时响应函数因局部扰动而引起的变化。我们根据井眼环境影响和地层性质的空间变化来量化中子FSF的变化和密度测量。使用新的近似值进行的模拟相对于蒙特卡洛模拟的测井得出的密度模拟值误差小于0.02 g / cm(3)。此外,对于密度的径向几何因子,由于地层密度的实际变化,我们在总灵敏度的90%处观察到最大3 cm的偏移。对于中子性质(迁移长度)的径向变化,研究径向长度的最大变化为10.4 cm。用新的近似值模拟的中子孔隙度值与蒙特卡洛模拟的差异小于10%。与使用MCNP的几个小时相比,这种近似值可以在几秒钟的CPU时间内模拟井孔核测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号