首页> 外文会议>Transactions of the SPWLA >RAPID SIMULATION OF BOREHOLE NUCLEAR MEASUREMENTS WITH APPROXIMATE SPATIAL FLUX-SCATTERING FUNCTIONS
【24h】

RAPID SIMULATION OF BOREHOLE NUCLEAR MEASUREMENTS WITH APPROXIMATE SPATIAL FLUX-SCATTERING FUNCTIONS

机译:具有近似空间磁通散射函数的核孔测量的快速模拟

获取原文
获取原文并翻译 | 示例

摘要

The Monte Carlo method has been the foremost numerical technique used to simulate borehole nuclear measurements. This is due to its detailed geometrical capabilities, high numerical accuracy, and ability to incorporate specific tool configurations and complex spatial distributions of material properties. Although recent advances in computer technology have considerably reduced the computer time required by Monte Carlo simulations of borehole nuclear measurements, the efficiency of the method is still not sufficient for either inversion techniques or joint interpretation with other borehole measurements. We develop and benchmark fast approximate numerical procedures to simulate neutron and density porosity logs making use of Monte Carlo-derived spatial fluxscattering functions (FSFs) for specific nuclear tool configurations. To this end, we describe the flux at detectors due to particles emitted by the radioactive source with the integral representation of Boltzmann’s transport equation. Subsequently, we use the Monte Carlo Code MCNP to calculate the associated Green’s function and the background particle flux included in the integral form of the transport equation. The solution of the integral equation is approximated with a Born series expansion that includes various orders of interaction between material properties and sources in the calculation of particle flux.Simulations performed with the new approximations entail percent errors of less than 10% with respect to Monte Carlo-simulated nuclear logs. Moreover, for the case of density FSFs we observed a maximum shift in the radially-integrated radial length of investigation (radial J-functions) of 0.3 inches due to variations of formation density. For the case of neutron FSFs the maximum change in the radial length of investigation due to variations of modified migration length was approximately equal to 2 inches. The approximations introduced in this paper enable the simulation of borehole nuclear measurements in seconds of CPU time compared to several days of CPU time with MCNP.
机译:蒙特卡洛方法一直是用于模拟井壁核测量的最重要的数值技术。这是由于其详细的几何功能,较高的数值精度以及合并特定工具配置和材料属性的复杂空间分布的能力。尽管计算机技术的最新发展已大大减少了井孔核测量的蒙特卡洛模拟所需的计算机时间,但该方法的效率仍然不足以用于反演技术或与其他井孔测量的联合解释。我们针对特定的核工具配置,利用蒙特卡罗衍生的空间通量散射函数(FSF),开发了快速近似数值程序并对其进行了基准测试,以模拟中子和密度孔隙率测井曲线。为此,我们用Boltzmann输运方程的整数表示来描述由于放射源发出的粒子而导致的探测器处的通量。随后,我们使用蒙特卡罗代码MCNP来计算相关的格林函数和包含在运输方程积分形式中的背景粒子通量。积分方程的解可用Born级数展开来近似,该展开式包含了粒子通量计算中材料特性和源之间各种相互作用的阶次,使用新的近似值进行的模拟相对于Monte Carlo误差小于10%模拟核日志。此外,对于密度FSFs,由于地层密度的变化,我们观察到的径向积分径向长度(径向J函数)最大偏移为0.3英寸。对于中子FSF,由于改变的迁移长度的变化,研究径向长度的最大变化约为2英寸。与采用MCNP的几天CPU时间相比,本文介绍的近似值可以在几秒钟的CPU时间中模拟井壁核测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号