首页> 外文会议>SPWLA (Society of Petrophysicists and Well Log Analysts) Annual Logging Symposium >RAPID SIMULATION OF BOREHOLE NUCLEAR MEASUREMENTS WITH APPROXIMATE SPATIAL FLUX-SCATTERING FUNCTIONS
【24h】

RAPID SIMULATION OF BOREHOLE NUCLEAR MEASUREMENTS WITH APPROXIMATE SPATIAL FLUX-SCATTERING FUNCTIONS

机译:具有近似空间磁通散射功能的钻孔核测量的快速模拟

获取原文

摘要

The Monte Carlo method has been the foremost numerical technique used to simulate borehole nuclear measurements. This is due to its detailed geometrical capabilities, high numerical accuracy, and ability to incorporate specific tool configurations and complex spatial distributions of material properties. Although recent advances in computer technology have considerably reduced the computer time required by Monte Carlo simulations of borehole nuclear measurements, the efficiency of the method is still not sufficient for either inversion techniques or joint interpretation with other borehole measurements. We develop and benchmark fast approximate numerical procedures to simulate neutron and density porosity logs making use of Monte Carlo-derived spatial fluxscattering functions (FSFs) for specific nuclear tool configurations. To this end, we describe the flux at detectors due to particles emitted by the radioactive source with the integral representation of Boltzmann’s transport equation. Subsequently, we use the Monte Carlo Code MCNP to calculate the associated Green’s function and the background particle flux included in the integral form of the transport equation. The solution of the integral equation is approximated with a Born series expansion that includes various orders of interaction between material properties and sources in the calculation of particle flux.Simulations performed with the new approximations entail percent errors of less than 10% with respect to Monte Carlo-simulated nuclear logs. Moreover, for the case of density FSFs we observed a maximum shift in the radially-integrated radial length of investigation (radial J-functions) of 0.3 inches due to variations of formation density. For the case of neutron FSFs the maximum change in the radial length of investigation due to variations of modified migration length was approximately equal to 2 inches. The approximations introduced in this paper enable the simulation of borehole nuclear measurements in seconds of CPU time compared to several days of CPU time with MCNP.
机译:Monte Carlo方法是用于模拟钻孔核测量的最重要的数值技术。这是由于其详细的几何能力,高值准确性以及包含特定工具配置和复杂的材料特性的复杂空间分布的能力。尽管计算机技术的最近进步大大减少了蒙特卡罗模拟钻孔核测量所需的计算机时间,但该方法的效率仍然不足以与其他钻孔测量的反转技术或联合解释。我们开发和基准快速近似数值程序来模拟中子和密度孔隙度原木,利用Monte Carlo推导的空间磁通散射功能(FSF)进行特定的核工具配置。为此,我们描述了由于放射源发射的颗粒具有诸如Boltzmann的传输方程的积分表示的颗粒的探测器的磁通量。随后,我们使用Monte Carlo Code MCNP计算传送方程的整体形式中包括的相关绿色的功能和背景粒子通量。积分方程的解近似于出生的串联扩展,包括在计算粒子通量计算中的材料特性和源之间的各种交互。随着新近似进行的分布,相对于蒙特卡洛,百分比误差小于10%。 - 刺激核日志。此外,对于密度FSF的情况,由于形成密度的变化,我们观察到径向集成的径向径向径向调查的径向径向径向(径向J函数)的最大变化。对于中子FSF的情况,由于改进的迁移长度变化,径向调查的最大变化大约等于2英寸。本文中引入的近似值使得在CPU时间的秒数与MCNP的CPU时间几天相比,在几秒钟内模拟了钻孔核测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号