...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >New full-wave phase-shift approach to solve the Helmholtz acoustic wave equation for modeling
【24h】

New full-wave phase-shift approach to solve the Helmholtz acoustic wave equation for modeling

机译:求解亥姆霍兹声波方程的新型全波相移方法

获取原文
获取原文并翻译 | 示例
           

摘要

We have developed a method of solving the Helmholtz equation based on a new way to generalize the "one-way" wave equation, impose correct boundary conditions, and eliminate ex-ponentially growing evanescent waves. The full two-way nature of the Helmholtz equation is included, but the equation is converted into a pseudo one-way form in the framework of a generalized phase-shift structure consisting of two coupled first-order partial differential equations for wave propagation with depth. A new algorithm, based on the particular structure of the coupling between аP/аz and а~2P/аz~2, is introduced to treat this problem by an explicit approach. More precisely, in a depth-marching strategy, the wave operator is decomposed into the sum of two matrices: The first one is a propagator in a re-ference velocity medium, whereas the second one is a perturba-tion term which takes into account the vertical and lateral variation of the velocity. The initial conditions are generated by solving the Lippmann-Schwinger integral equation formally, in a noniterative fashion. The approach corresponds essentially to "factoring out" the physical boundary conditions, thereby converting the inhomogeneous Lippmann-Schwinger integral equation of the second kind into a Volterra integral equation of the second kind. This procedure supplies artificial boundary conditions, along with a rigorous method for converting these solutions to those satisfying the correct, Lippmann-Scwinger (physical) boundary conditions. To make the solution numerically stable, the Feshbach projection operator technique is used to remove only the nonphysical exponentially growing evanescent waves, while retaining the exponentially decaying evanescent waves, along with all propagating waves. Suitable absorbing boundary conditions are implemented to deal with reflection or wraparound from boundaries. At the end, the Lippmann-Schwinger solutions are superposed to produce time snapshots of the propagating wave.
机译:我们已经开发了一种解决Helmholtz方程的方法,该方法基于一种新方法来推广“单向”波动方程,施加正确的边界条件并消除呈指数增长的growing逝波。包括了亥姆霍兹方程的全部双向性质,但是在广义相移结构的框架中将该方程转换为伪单向形式,该相移结构由两个耦合的一阶偏微分方程组成,用于深度波的传播。引入了一种新算法,该算法基于ΔP/α和Δ〜2P /Δz〜2之间的耦合的特定结构,通过一种显式方法来解决此问题。更精确地说,在深度行进策略中,将波算子分解为两个矩阵的总和:第一个是参考速度介质中的传播子,而第二个是考虑了摄动的项速度的垂直和横向变化。初始条件是通过非迭代方式正式求解Lippmann-Schwinger积分方程而生成的。该方法本质上对应于“解出”物理边界条件,从而将第二种不均匀的Lippmann-Schwinger积分方程转换为第二种Volterra积分方程。该程序提供了人工边界条件,以及将这些解转换为满足正确的Lippmann-Scwinger(物理)边界条件的严格方法。为了使解在数值上稳定,使用Feshbach投影算子技术仅除去非物理指数增长的e逝波,同时保留指数衰减的van逝波以及所有传播波。实现适当的吸收边界条件以处理来自边界的反射或环绕。最后,将Lippmann-Schwinger解决方案叠加起来,以生成传播波的时间快照。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号