首页> 外文学位 >New generalized phase shift approach to solve the Helmholtz acoustic wave equation.
【24h】

New generalized phase shift approach to solve the Helmholtz acoustic wave equation.

机译:新的广义相移方法可解决亥姆霍兹声波方程。

获取原文
获取原文并翻译 | 示例

摘要

We have developed and given some proof of concept applications of a new method of solving the Helmholtz wave equation in order to facilitate the exploration of oil and gas. The approach is based on a new way to generalize the "one-way" wave equation, and to impose correct boundary conditions. The full two-way nature of the Helmholtz equation is considered, but converted into a pseudo "one-way" form with a generalized phase shift structure for propagation in the depth z. Two coupled first order partial differential equations in the depth variable z are obtained from the Helmholtz wave equation. Our approach makes use of very simple, standard ideas from differential equations and early ideas on the non-iterative solution of the Lippmann-Schwinger equation in quantum scattering. In addition, a judicious choice of operator splitting is introduced to ensure that only explicit solution techniques are required. This avoids the need for numerical matrix inversions. The initial conditions are more challenging due to the need to ensure that the solution satisfies proper boundary conditions associated with the waves traveling in two directions. This difficulty is resolved by solving the Lippmann-Schwinger integral equation in an explicit, non-iterative fashion. It is solved by essentially "factoring out" the physical boundary conditions, thereby converting the inhomogeneous Lippmann-Schwinger integral equation of the second kind into a Volterra integral equation of the second kind. Due to the special structure of the kernel, which is a consequence of the causal nature of the Green's function in the Lippmann-Schwinger equation, this turns out to be extremely efficient. The coupled first order differential equations will be solved using the "modified Cayley method" developed in Kouri's group some years ago. The Feshbach projection operator technique is used for constructing a solution that is stable with respect to "evanescent" or "non-propagating" waves. This method is tailored to the coupled first order differential equation formulation. Non-reflecting or absorbing boundary conditions are used to get rid of the reflections or wraparound from the artificial boundaries of the velocity grid.
机译:为了方便油气勘探,我们已经开发并给出了一种求解亥姆霍兹波动方程的新方法的概念验证应用。该方法基于一种新的方法,可以推广“单向”波动方程,并施加正确的边界条件。考虑了亥姆霍兹方程的完全双向性质,但是将其转换为具有广义相移结构的伪“单向”形式,以便在深度z中传播。从Helmholtz波动方程获得深度变量z中的两个耦合的一阶偏微分方程。我们的方法利用了来自微分方程的非常简单的标准思想以及有关量子散射中Lippmann-Schwinger方程的非迭代解的早期思想。此外,引入了明智的操作员拆分选择,以确保仅需要显式的解决方案技术。这避免了数值矩阵求逆的需要。由于需要确保解满足与沿两个方向传播的波相关的适当边界条件,因此初始条件更具挑战性。通过以显式,非迭代方式求解Lippmann-Schwinger积分方程,可以解决此难题。通过基本上“分解”物理边界条件,从而将第二种不均匀的Lippmann-Schwinger积分方程转换为第二种Volterra积分方程,可以解决该问题。由于内核的特殊结构(这是Lippmann-Schwinger方程中格林函数因果关系的结果),因此这非常有效。耦合的一阶微分方程将使用几年前Kouri小组开发的“改进的Cayley方法”求解。 Feshbach投影算子技术用于构建对“渐逝”或“非传播”波稳定的解决方案。该方法适合于耦合的一阶微分方程公式。使用非反射或吸收边界条件可以摆脱速度网格的人工边界的反射或环绕。

著录项

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Geophysics.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号