【24h】

Automatic nonhyperbolic velocity analysis

机译:自动非双曲速度分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The stacking of long-offset seismic data requires a nonhyperbolic traveltime function that depends on two-way traveltime, normal moveout (NMO) velocity and effective anellipticity. Based on a standard fractional approximation, a new parameterization in slowness-squared parameters provides optimal sampling of the NMO velocity and anellipticity. The automatic nonhyperbolic velocity analysis is performed with a normalized bootstrapped differential semblance (BDS) coherency estimator that leads to enhanced resolution in velocity spectra compared to differential semblance. Reflection wavelet centering inside time gates results in improved estimates of the two-way time and reduced bias in estimates of the NMO velocity and anellipticity. Generalized Dix equations give estimates of apparent interval thickness, velocity and anellipticity. The interval parameters will fit a homogeneous transversely isotropic medium with a vertical symmetry axis (a VTI medium) or an isotropic layer with a linear velocity gradient. The algorithm is implemented in a two-step strategy. A coarse hyperbolic velocity analysis that identifies events in the gather and estimates a velocity law for applying the truncation is followed by a dense nonhyperbolic search to infer the physical parameters required for time processing of PP-wave data. The algorithm outputs an automatic stack and laterally varying moveout velocity and anellipticity maps that can be used for subsequent time processing. Two attribute maps, the BDS map and its derivative, are also computed. These contain the fingerprints of the key reflectors and can be used in structural interpretation. Automatic nonhyperbolic velocity analysis is tested on a synthetic gather and a real data set from the North Sea. Nonhyperbolic parameter search shows an enhanced estimate of the processing parameters, velocity and anellipticity, and improved quality of the stacked section compared with the result from hyperbolic search. The interval moveout velocity maps demonstrate a good match with the reflector positions in the obtained sections and show a great correlation when compared with the results of more advanced processing. The interval anellipticity map is also important for enhanced time processing and resolving the time-depth conversion problem, but the parameter is meaningless when the anisotropy is important or when the aperture is small, mainly for deep reflectors.
机译:长偏移地震数据的叠加需要一个非双曲线的走时函数,该函数取决于双向走时,正常时差(NMO)速度和有效椭圆度。基于标准分数近似,慢度平方参数的新参数化可提供NMO速度和椭圆度的最佳采样。使用归一化的自举差分相似性(BDS)相干估计器执行自动非双曲线速度分析,与差分相似性相比,它可以提高速度谱的分辨率。时间门内部的反射小波居中可改善双向时间估计,并减少NMO速度和椭圆度估计的偏差。广义的Dix方程可估算表观的间隔厚度,速度和椭圆度。间隔参数将适合具有垂直对称轴的均质横向各向同性介质(VTI介质)或具有线性速度梯度的各向同性层。该算法以两步策略实现。粗略的双曲线速度分析可识别聚集中的事件并估计用于应用截断的速度定律,然后进行密集的非双曲线搜索以推断出PP波数据的时间处理所需的物理参数。该算法输出一个自动堆栈以及横向变化的运动速度和椭圆度图,可用于后续时间处理。还计算了两个属性图,即BDS图及其派生图。这些包含键反射器的指纹,可用于结构解释。自动非双曲线速度分析在北海的合成采集和真实数据集上进行测试。与双曲搜索结果相比,非双曲参数搜索显示出对加工参数,速度和椭圆度的增强估计,并且堆叠截面的质量得到了提高。与更先进的处理结果相比,间隔时差速度图显示了与获得的剖面中的反射器位置的良好匹配,并显示出很大的相关性。间隔椭圆度贴图对于增强时间处理和解决时-深转换问题也很重要,但是当各向异性很重要或孔径较小时(主要是对于深反射体),该参数毫无意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号