首页> 外文期刊>Geophysical and Astrophysical Fluid Dynamics >Régimes of sloping thermal convection in a rotating liquid 'annulus'
【24h】

Régimes of sloping thermal convection in a rotating liquid 'annulus'

机译:旋转液体“环空”中倾斜热对流的角度

获取原文
获取原文并翻译 | 示例
           

摘要

Wide-ranging laboratory investigations of thermally-driven flows in a baroclinic liquid of low viscosity and thermal conductivity in apparatus bounded by concentric cylindrical side-walls have (a) identified the dynamically-significant dimensionless parameters in terms of which the impressed conditions can be expressed, (b) stimulated advances in theoretical research on nonlinear dynamical systems, (c) established that under most (mechanical and thermal) boundary conditions, the action of gyroscopic (Coriolis) forces ensures that the dominant mode of heat transfer is "sloping thermal convection" (STC), and (d) provided insights into flows occurring in natural rotating fluid systems on length-scales up to thousands of kilometres. STC is characterised by relative flow that is nearly horizontal nearly everywhere, in wide-ranging patterns of waves and eddies which exhibit jet streams and fronts and which in some cases are spatially and temporally highly regular and in others are highly irregular ("chaotic"). Some of these manifold laboratory flows have their counterparts in the gaseous atmospheres of the Earth, Jupiter, Saturn and other spinning planets. When Coriolis forces are not quite strong enough to promote baroclinic instability leading to STC, heat transfer and associated generation of kinetic energy by buoyancy forces is effected by axisymmetric meridional overturning involving inter alia radial flow in end-wall Ekman boundary layers and vertical flow in side-wall boundary layers. Otherwise Coriolis forces promote quasi-geostrophic nonaxisymmetric STC in the main body of the fluid. "Barotropic stability" due to enstrophy constraints renders this STC regular (i.e. spatially and temporally periodic) when the azimuthal scale of the flow exceeds a critical value found to satisfy a remarkably simple criterion. At shorter scales, enstrophy constraints weaken and no longer suffice to prevent inter-mode kinetic energy exchanges characteristic of "geostrophic turbulence". The present article on r? le of boundary layers and on other aspects of annulus flows is largely intended to guide future investigations of crucial details of the dynamical processes that underlie fully-developed STC, some made possible by the ever-improving techniques of computational fluid dynamics.
机译:在以同心圆柱侧壁为边界的设备中,对粘度低且导热率低的斜压液体中的热驱动流进行的广泛实验室研究(a)确定了动态显着的无量纲参数,可以用这些参数来表达施加条件,(b)激发了非线性动力系统理论研究的进展,(c)确立了在大多数(机械和热)边界条件下,陀螺(科里奥利)力的作用确保了传热的主要方式是“倾斜热对流”。 (STC)和(d)提供了对自然旋转流体系统中发生的流量的见解,其长度范围可达数千公里。 STC的特征是相对流动几乎在任何地方都几乎是水平的,波和涡流的范围广泛,表现出喷射流和前沿,在某些情况下在空间和时间上高度规则,而在其他情况下则高度不规则(“混乱”) 。在地球,木星,土星和其他自转行星的气态大气中,这些歧管实验室流中的某些与它们对应。当科里奥利力的强度不足以促使斜压不稳定导致STC时,浮力的传热和相关动能的产生受到轴对称子午线翻转的影响,其中包括端壁Ekman边界层的径向流和侧面的垂直流-墙边界层。否则,科里奥利力会促进流体主体中的准地转非轴对称STC。当流动的方位角尺度超过一个被发现满足非常简单的标准的临界值时,由于熵限制而引起的“重离子稳定性”使该STC规则(即在空间和时间上是周期性的)。在较短的尺度上,涡旋约束减弱并且不再足以防止“地转湍流”特征的模式间动能交换。本关于r?的文章边界层以及环空流动的其他方面在很大程度上旨在指导未来研究充分发展的STC背后的动力学过程的关键细节,其中一些是通过不断改进的计算流体动力学技术而实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号