首页> 外文期刊>Geophysical and Astrophysical Fluid Dynamics >A steady nonlinear and singular vortex Rossby wave within a rapidly rotating vortex. Part II: Application to geophysical vortices
【24h】

A steady nonlinear and singular vortex Rossby wave within a rapidly rotating vortex. Part II: Application to geophysical vortices

机译:快速旋转涡旋中的稳定非线性奇异涡旋Rossby波。第二部分:地球物理涡旋的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In a previous paper, Caillol [Geophys. Astrophys. Fluid Dyn., 2014, 108] investigated the steady nonlinear vortical structure of a singular vortex Rossby mode that has survived to a strong critical-layer-like interaction with a linearly stable, columnar, axisymmetric and dry vortex. We presented a general theory for this wave/mean flow interaction through the nonlinear critical layer theory and calculated the mean azimuthal and axial winds induced at the critical radius at the end of this interaction in the final stage. We here apply that theory to rapidly rotating geophysical vortices: tropical cyclones, cold-air mesocyclones and tornadoes. We find that the numerous assumptions invoked in that paper agree well with the reality of those intense vortices. We also find that in spite of a lack of moist-convection modelling, this dry vortex is fairly well accelerated at the critical radius by such a shear wave with a magnitude of order the square root of the damped-wave amplitude. The intensification level strongly depends on the aspect ratio, height of the system: rapid vortex and parent vortex, over core radius. The thinner the vortex is, the sharper the intensification is. This result is in sharp contrast to the numerous numerical simulations on VR wave/vortex interactions that yield a much smaller intensification of order the square of the wave amplitude. This weakly nonlinear approach nevertheless fails to model small vertical wavelength VR wave/vortex interactions for their related asymptotic expansions are divergent and for they yield strongly nonlinear VR waves coupled with evolving critical layers whose extent can no longer be considered as thin.
机译:在以前的论文中,Caillol [Geophys。天体。 Fluid Dyn。,2014,108]研究了奇异涡旋Rossby模式的稳态非线性涡旋结构,该结构在与线性稳定,柱状,轴对称和干旋涡的强烈临界层状相互作用下得以幸存。我们通过非线性临界层理论提出了这种波浪/平均流相互作用的一般理论,并在最后阶段在相互作用结束时计算了在临界半径处引起的平均方位角和轴向风。我们在这里将这一理论应用于快速旋转的地球物理涡旋:热带气旋,冷空气中气旋和龙卷风。我们发现,该论文中引用的众多假设与这些强烈涡旋的现实非常吻合。我们还发现,尽管缺乏湿对流模型,但这种干涡在临界半径处被这样的切变波相当好地加速,该切变波的大小为阻尼波振幅的平方根。增强水平在很大程度上取决于纵横比,系统高度:核心半径上的快速涡旋和父涡旋。涡旋越薄,强度越大。该结果与VR波/涡旋相互作用的大量数值模拟形成了鲜明的对比,VR波/涡旋相互作用产生的波动幅度的平方值要小得多。但是,这种弱非线性方法无法对垂直波长较小的VR波/涡旋相互作用进行建模,因为它们的相关渐近扩展是发散的,因为它们会产生强烈的非线性VR波,并与不断演变的临界层耦合,其程度不再被认为很薄。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号