...
首页> 外文期刊>Geophysical and Astrophysical Fluid Dynamics >Onset of rotating and non-rotating convection in compressible and anelastic ideal gases
【24h】

Onset of rotating and non-rotating convection in compressible and anelastic ideal gases

机译:可压缩和无弹性理想气体中旋转和非旋转对流的开始

获取原文
获取原文并翻译 | 示例
           

摘要

A linear stability analysis for compressible convection in a plane layer geometry both with and without the influence of rotation is presented. For the rotating cases we employ the tilted f-plane geometry that allows for varying angles between the rotation and gravity vectors. The stability criteria for compressible and anelastic ideal gases is compared. As expected, the critical parameters for the compressible equations approach those of the anelastic equations as the background stratification approaches the adiabatic (anelastic) limit. For the rotating cases, we observe asymptotic scaling behavior in the critical parameters in both compressible and anelastic fluids as the Taylor number becomes large. In contrast to the incompressible limit, finite tilt angles between the gravity and rotation vectors result in propagating compressible Rossby waves as the most unstable eigenmode and the critical parameters are established for a range of stratification levels and Taylor numbers; all wave orientations are found to propagate in prograde and equatorward directions for non-isothermal background states. We also compare the linear stability of the thermodynamically rigorous anelastic equations with an anelastic model that replaces thermal diffusion with an entropy diffusion-like term in the energy equation; it is shown that the linear stability of the entropy diffusion model yields qualitatively similar results for the critical parameters in comparison to the full anelastic set. We show that a thermodynamically rigorous alternative to the entropy diffusion model is the isothermal adiabatic background state in which temperature and entropy become equivalent thermodynamic quantities and viscous heating becomes subdominant in the energy equation; the stability characteristics of this model are also presented.
机译:提出了在有和没有旋转影响的情况下,平面层几何中可压缩对流的线性稳定性分析。对于旋转情况,我们采用倾斜的f平面几何形状,该几何形状允许在旋转矢量和重力矢量之间改变角度。比较了可压缩和非弹性理想气体的稳定性标准。不出所料,当背景分层接近绝热(非弹性)极限时,可压缩方程的临界参数接近非弹性方程的临界参数。对于旋转情况,随着泰勒数变大,我们在可压缩流体和非弹性流体中的关键参数中观察到渐近缩放行为。与不可压缩的极限相反,重力和旋转矢量之间的有限倾斜角导致传播可压缩的Rossby波,因为它是最不稳定的本征模,并且为一系列分层级别和泰勒数确定了关键参数。对于非等温本底状态,发现所有波向都在前进和赤道方向上传播。我们还将热力学严格的非弹性方程的线性稳定性与非弹性模型进行比较,该模型将热扩散替换为能量方程中的类似于熵扩散的项。结果表明,与全非弹性集相比,关键参数的熵扩散模型的线性稳定性在质量上得到相似的结果。我们表明,熵扩散模型的热力学严格替代方案是等温绝热背景状态,其中温度和熵成为等效热力学量,粘性加热在能量方程中占主导地位。还介绍了该模型的稳定性特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号