首页> 外文期刊>Geophysical and Astrophysical Fluid Dynamics >Vector and scalar spherical harmonic spectral equations for rapidly rotating anisotropic alpha-effect dynamos
【24h】

Vector and scalar spherical harmonic spectral equations for rapidly rotating anisotropic alpha-effect dynamos

机译:矢量和标量球谐谱方程,用于快速旋转的各向异性α效应发电机

获取原文
获取原文并翻译 | 示例
           

摘要

Spectral equations are derived for a mean field induction equation, ?B/?t-▽~2B= R▽×F with an a-effect, considered appropriate for rapid rotation, given by F = a ?B = a_1B + a_3z ?B z, where (x,?,z) are Cartesian unit vectors, a1(r,θ,φ), a3(r,θ,φ) are scalar functions of position, (r,θ,φ) are spherical polar coordinates and R is the magnetic Reynolds number. The effect of rotation on convection for different boundaries and parameters is discussed. The effect of the flow structure on a for different geostrophic and near geostrophic models is analysed. The vector spherical harmonics Y_(n,n1)~m (θ,φ) = (-1)~(n-m)[2n+ 1]~(1/2) ∑_(μ=-1,0,1)(_m~n _(μ- m)~(n1)_(-μ)~1)Y_(n1)~(m-μ)e_μ, where e_(-1) = (x - i?)/2~(1/2), e_0 =^z, e_1 = -(x + i ?)=21=2, the 2×3 matrix is a Wigner 3J coefficient and Y_n~m= Y_n~m (θ,φ) are scalar spherical harmonics, are used to derive the vector Y_(n,n1)~m forms of the induction equation for this α-effect. The solenoidal condition ▽? B = 0 is imposed by relating the Y_(n,n1)~m formalism to the toroidal–poloidal harmonic formalism, T_n~m = ▽ × (rT _n~m Y_n~m) and S_n~m = ▽ × ▽ × (rS_n~m Y_n~m). The T _n~m and S_n~m components of the induction equation are thus derived in terms of F_(n,n1)~m, the Y_(n,n1)~m components of F; F =∑_(n1=n-1)~(n+1)∑~n_(m=-n)∑_(n=0)~∞ F~m_(n,n1) Y_(n,n1)~m. These combined T_n~m /Y_(n,n1)~m, S_n~m /Y_(n,n1)~m vector spectral equations are then transformed into interaction type (a_(na)S_nS_N)_I, (a_(na)T_nT_N)_I, (a_(na)S_nT_N)_I, (a_(na)T_nS_N)_I and (a_(na)S_nS_N)_A, (a_(na)T_nT_N)_A, (a_(na)S_nT_N)_A, (a_(na)T_nS_N)_A equations for the isotropic and anisotropic components of a. As an application of the general spectral equations derived herein, the interaction equations can be specialised by restricting a_1 and a_3 to be proportional to r cos θ or cos θ, or restricting B and α to be axisymmetric. These equations are then compared to those of previous works. The differences between the equations derived herein and those of past works provide corrections and account for, at least in part, the differences in numerical solutions of the past works.
机译:对于平均磁场感应方程,得出频谱方程,ΔB/Δt-▽〜2B = R▽×F,具有a效应,被认为适合快速旋转,由F = a = B = a_1B + a_3z = B z,其中(x,?,z)是笛卡尔单位向量,a1(r,θ,φ),a3(r,θ,φ)是位置的标量函数,(r,θ,φ)是球面极坐标,并且R是雷诺数。讨论了旋转对不同边界和参数对流的影响。分析了流动结构对不同地转和近地转模型的影响。向量球谐函数Y_(n,n1)〜m(θ,φ)=(-1)〜(nm)[2n + 1]〜(1/2)∑_(μ= -1,0,1)(_ m 〜n _(μ-m)〜(n1)_(-μ)〜1)Y_(n1)〜(m-μ)e_μ,其中e _(-1)=(x-i?)/ 2〜(1 / 2),e_0 = ^ z,e_1 =-(x + i?)= 21 = 2,2×3矩阵是维格纳3J系数,Y_n〜m = Y_n〜m(θ,φ)是标量球谐函数用于推导该α效应的感应方程的向量Y_(n,n1)〜m形式。电磁条件▽? B = 0是通过将Y_(n,n1)〜m形式主义与超环面-弧形谐波形式主义相关联来实现的,T_n〜m =▽×(rT _n〜m Y_n〜m)和S_n〜m =▽×▽×( rS_n〜m Y_n〜m)。因此,根据F的F_(n,n1)〜m,F的Y_(n,n1)〜m分量推导出感应方程的T _n〜m和S_n〜m分量。 F = ∑_(n1 = n-1)〜(n + 1)∑〜n_(m = -n)∑_(n = 0)〜∞F〜m_(n,n1)Y_(n,n1)〜米然后将这些组合的T_n〜m / Y_(n,n1)〜m,S_n〜m / Y_(n,n1)〜m矢量频谱方程转换为交互类型(a_(na)S_nS_N)_I,(a_(na) T_nT_N)_I,(a_(na)S_nT_N)_I,(a_(na)T_nS_N)_I和(a_(na)S_nS_N)_A,(a_(na)T_nT_N)_A,(a_(na)S_nT_N)_A,( a的各向同性和各向异性分量的a_(na)T_nS_N)_A方程。作为在此推导的一般光谱方程的应用,可以通过将a_1和a_3限制为与r cosθ或cosθ成比例,或者将B和α限制为轴对称来专门化相互作用方程。然后将这些方程与以前的工作进行比较。本文导出的方程与过去的工作之间的差异提供了更正,并且至少部分地说明了过去的工作中数值解决方案的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号