...
首页> 外文期刊>Biogeosciences >Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation
【24h】

Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation

机译:在全球模型中检查土壤碳不确定性:微生物分解对温度,湿度和养分限制的响应

获取原文
获取原文并翻译 | 示例

摘要

Reliable projections of future climate require land–atmosphere carbon (C) fluxes to be represented realistically in Earth system models (ESMs). There are several sources of uncertainty in how carbon is parameterised in these models. First, while interactions between the C, nitrogen (N) and phosphorus (P) cycles have been implemented in some models, these lead to diverse changes in land–atmosphere fluxes. Second, while the first-order parameterisation of soil organic matter decomposition is similar between models, formulations of the control of the soil physical state on microbial activity vary widely. For the first time, we address these sources of uncertainty simultaneously by implementing three soil moisture and three soil temperature respiration functions in an ESM that can be run with three degrees of biogeochemical nutrient limitation (C-only, C and N, and C and N and P). All 27 possible combinations of response functions and biogeochemical mode are equilibrated before transient historical (1850–2005) simulations are performed. As expected, implementing N and P limitation reduces the land carbon sink, transforming some regional sinks into net sources over the historical period. Meanwhile, regardless of which nutrient mode is used, various combinations of response functions imply a two-fold difference in the net ecosystem accumulation and a four-fold difference in equilibrated total soil C. We further show that regions with initially larger pools are more likely to become carbon sources, especially when nutrient availability limits the response of primary production to increasing atmospheric CO_2. Simulating changes in soil C content therefore critically depends on both nutrient limitation and the choice of respiration functions.
机译:要可靠地预测未来的气候,就需要在地球系统模型(ESM)中真实地表示陆地-大气中的碳(C)通量。在这些模型中如何对碳进行参数设置存在多种不确定性来源。首先,虽然在某些模型中已经实现了碳,氮(N)和磷(P)循环之间的相互作用,但这些相互作用导致了陆地-大气通量的变化。第二,虽然模型之间的土壤有机质分解的一级参数相似,但控制土壤物理状态对微生物活性的控制公式却相差很大。我们首次通过在ESM中实现三种土壤湿度和三种土壤温度呼吸功能来同时解决这些不确定性源,该功能可在三个生物地球化学养分限制条件下运行(仅C,C和N以及C和N和P)。在执行瞬态历史(1850-2005)模拟之前,平衡了响应函数和生物地球化学模式的所有27种可能组合。不出所料,实施氮和磷限制会减少土地碳汇,在历史时期内将一些区域碳汇转化为净碳源。同时,无论使用哪种养分模式,响应函数的各种组合都意味着生态系统净累积的两倍和平衡土壤总C的四倍。我们进一步表明,初始池较大的区域更有可能成为碳源,特别是当养分可利用性限制了初级生产对大气中CO_2增加的响应时。因此,模拟土壤碳含量的变化关键取决于养分限制和呼吸功能的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号