首页> 外文期刊>Biogeosciences >Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model
【24h】

Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

机译:替代林分火灾后模拟北方森林碳动态:基于全球过程的植被模型的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO_2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO_2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO_2 history at each chronosequence site, the model simulations generally match the observed CO_2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO_2 flux ~100 gCm~(~(~(?2))) yr~(~(?1)), for biomass carbon ~1000 gCm~(~(~(?2))) and for soil carbon ~2000 gCm~(~(~(?2)))). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO_2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.
机译:替换林火是北美北方森林的主要火灾类型。他们留下了不同森林年龄的镶嵌景观的历史遗产。必须在植被模型中包括这种森林年龄动态,以准确量化火灾在历史和当前区域森林碳平衡中的作用。本研究改编了基于过程的全球植被模型ORCHIDEE,以模拟北方森林大火的CO_2排放以及在替换林火后的后续恢复。该模型代表了新团队建立后的火势,林分结构和自我稀疏过程。针对加拿大和阿拉斯加的三个森林火灾后时序序列的观察结果对模拟结果进行了评估。评估的变量包括:火碳排放量,CO_2通量(初级生产总值,生态系统总呼吸量和生态系统净交换量),叶面积指数和生物测定值(地上生物量碳,林地碳,木屑碳,林分个体密度,林分基底面积,以及乳房高度的平均直径)。当受当地气候和每个时序序列地点的大气CO_2历史记录强迫时,模型模拟通常会很好地匹配观测到的CO_2通量和碳储量数据,模型测量的偏差均方根与测量精度相当(对于CO_2通量为〜100 gCm〜(〜(〜(?2)))yr〜(〜(?1)),生物质碳〜1000 gCm〜(〜(〜(?2)))和土壤碳〜2000 gCm〜(〜( 〜(?2))))。我们发现,按时间序列方法观察,当前评估后地点的森林火灾后碳汇主要是由于历史CO_2的增加和森林演替的结合。在此期间,气候变化和多变性抵消了部分预期的碳增长。气候的负面影响可能是由于温度显着升高而引起的水分压力增加的结果,而降雨却没有同时增加。我们的模拟结果表明,诸如ORCHIDEE之类的全球植被模型能够捕获受火困扰的北方森林中的基本生态系统过程,并在火灾后的碳通量和碳库演变方面产生令人满意的结果。这使得该模型适合于北方地区的区域模拟,在这些地区,火灾情况在生态系统碳平衡中起关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号