首页> 外文期刊>Biogeosciences >Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model
【24h】

Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

机译:替代林分火灾后模拟北方森林碳动态:基于全球过程的植被模型的见解

获取原文
           

摘要

Stand-replacing fires are the dominant fire type in North American borealforests. They leave a historical legacy of a mosaic landscape of differentaged forest cohorts. This forest age dynamics must be included in vegetationmodels to accurately quantify the role of fire in the historical and currentregional forest carbon balance. The present study adapted the globalprocess-based vegetation model ORCHIDEE to simulate the CO2 emissionsfrom boreal forest fire and the subsequent recovery after a stand-replacingfire; the model represents postfire new cohort establishment, forest standstructure and the self-thinning process. Simulation results are evaluatedagainst observations of three clusters of postfire forest chronosequences inCanada and Alaska. The variables evaluated include: fire carbon emissions,CO2 fluxes (gross primary production, total ecosystem respiration andnet ecosystem exchange), leaf area index, and biometric measurements(aboveground biomass carbon, forest floor carbon, woody debris carbon, standindividual density, stand basal area, and mean diameter at breast height).When forced by local climate and the atmospheric CO2 history at eachchronosequence site, the model simulations generally match the observedCO2 fluxes and carbon stock data well, with model-measurement meansquare root of deviation comparable with the measurement accuracy (forCO2 flux ~100 g C m?2 yr?1, for biomass carbon~1000 g C m?2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at theevaluation sites, as observed by chronosequence methods, is mainly due to acombination of historical CO2 increase and forest succession. Climatechange and variability during this period offsets some of these expectedcarbon gains. The negative impacts of climate were a likely consequence ofincreasing water stress caused by significant temperature increases thatwere not matched by concurrent increases in precipitation. Our simulationresults demonstrate that a global vegetation model such as ORCHIDEE is ableto capture the essential ecosystem processes in fire-disturbed borealforests and produces satisfactory results in terms of both carbon fluxes andcarbon-stock evolution after fire. This makes the model suitable forregional simulations in boreal regions where fire regimes play a key role inthe ecosystem carbon balance.
机译:替换林火是北美北方森林的主要火灾类型。他们留下了不同森林群体镶嵌景观的历史遗产。必须在植被模型中包括这种森林年龄动态,以准确量化火灾在历史和当前区域森林碳平衡中的作用。本研究采用基于全球过程的植被模型ORCHIDEE来模拟北方森林火灾的CO 2 排放量以及替代林火后的后续恢复。该模型代表了新团队建立后的火力,森林的林分结构和自我变薄的过程。针对加拿大和阿拉斯加的三个篝火后森林时序序列,对模拟结果进行了评估。评估的变量包括:火碳排放量,CO 2 通量(主要生产总值,总生态系统呼吸和净生态系统交换),叶面积指数和生物特征度量(地上生物量碳,林地碳,木屑)碳,站立时的个体密度,站立的基础面积和胸高的平均直径)。受当地气候和每个时序序列站点的大气CO 2 历史的强迫,模型模拟通常与观测到的CO 2相匹配通量和碳储量数据良好,模型测量的均方根偏差与测量精度相当(对于CO 2 通量〜100 g C m ?2 yr ?1 ,对于生物质碳〜1000 g C m ?2 和土壤碳〜2000 g C m -2 )。我们发现,按时间序列方法观察,目前评估后地点的森林火灾后碳汇主要是由于历史CO 2 的增加和森林演替的结合。在此期间,气候变化和多变性抵消了部分预期的碳增长。气候的负面影响可能是由于温度显着升高而引起的水分压力增加,而降水却没有同时增加。我们的模拟结果表明,像ORCHIDEE这样的全球植被模型能够捕获受火困扰的北方森林中的基本生态系统过程,并在火灾后的碳通量和碳库演变方面产生令人满意的结果。这使得该模型适合于北方地区的区域模拟,在这些地区,火势在生态系统碳平衡中起着关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号