...
首页> 外文期刊>Biogeosciences >An inverse analysis reveals limitations of the soil-CO_2 profile method to calculate CO_2 production and efflux for well-structured soils
【24h】

An inverse analysis reveals limitations of the soil-CO_2 profile method to calculate CO_2 production and efflux for well-structured soils

机译:反向分析揭示了土壤-CO_2剖面法用于计算结构良好土壤的CO_2产生和流出的局限性

获取原文
获取原文并翻译 | 示例

摘要

Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxDEe (CO_2) production, is not well understood because it can not be measured in the field. CO_2 production has frequently been calculated from the vertical CO_2 diffusive flux divergence, known as 'soil-CO_2 profile method'. This relatively simple model requires knowledge of soil CO_2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D) calculated based on relationships with soil porosity and moisture ('physically modeled' D). Our objective was to investigate whether these inconsistencies were related to (1) the applied interpolation and solution methods and/or (2) uncertainties in the physically modeled profile of D. First, we show that the calculated CO_2 production strongly depends on the function used to interpolate between measured CO_2 concentrations. Secondly, using an inverse analysis of the soil-CO_2 profile method, we deduce which D would be required to explain the observed CO_2 concentrations, assuming the model perception is valDE. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D dDE not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn) mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO_2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO_2 exchange fluxes across water-filled pores causes the soil-CO_2 profile method to fail. These fluxes are driven by the different diffusivities in inter- vs. intra-aggregate pores which create permanent CO_2 gradients if separated by a 'diffusive water barrier'. These results corroborate other studies which have shown that the theory to treat gas diffusion as homogeneous process, a precondition for use of the soil-CO_2 profile method, is inaccurate for pore networks which exhibit spatial separation between CO_2 production and diffusion out of the soil.
机译:土壤呼吸是全球碳循环中的第二大通量,但由于无法在现场进行测量,因此人们根本不了解其地下地下过程二氧化碳二烯(CO_2)的产生。通常从垂直CO_2扩散通量散度计算出CO_2的产量,这被称为“土壤-CO_2剖面法”。这个相对简单的模型需要了解土壤CO_2浓度分布和土壤扩散特性。当使用基于与土壤孔隙度和湿度的关系计算的扩散系数(D)时,该方法在巴拿马的热带低地森林土壤中的应用结果不一致(“物理模拟” D)。我们的目的是调查这些不一致是否与(1)D的物理建模轮廓中的应用的插值和求解方法和/或(2)不确定性有关。首先,我们表明计算出的CO_2产量在很大程度上取决于所使用的函数在测量的CO_2浓度之间进行插值。其次,通过对土壤CO_2剖面方法进行反分析,假设模型感知值为valDE,我们推导了哪个D才能解释观测到的CO_2浓度。在表层土壤中,此反向建模的D非常类似于物理模型D。但是在深层土壤中,该反向建模的D急剧增加,而物理模型D dDE则没有。在拟合参数优化过程中施加约束时,可以找到一种解决方案,其中物理模型D和逆模型D之间的偏差消失了。 don(Rn)质量平衡模型(其中基于物理建模或约束逆建模D计算扩散)可以合理地模拟观察到的Rn轮廓。但是,与测量值相反,与约束逆模型D相对应的CO_2浓度太小。我们建议,在结构良好的土壤中,缺少对充满水的孔隙中的稳态CO_2交换通量的描述会导致土壤CO_2剖面方法失败。这些通量是由内部聚集体孔与内部聚集体孔中不同的扩散率驱动的,如果被“扩散性水屏障”隔开,则会产生永久的CO_2梯度。这些结果证实了其他研究结果,这些研究表明,将气体扩散视为均质过程的理论是使用土壤CO_2剖面法的前提条件,对于显示CO_2产生与土壤扩散之间空间分离的孔隙网络而言,该理论是不准确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号