首页> 外文期刊>Geology >Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation: Crystal plasticity at sub-seismic slip rates at 18-150°C
【24h】

Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation: Crystal plasticity at sub-seismic slip rates at 18-150°C

机译:方解石断层泥中的纳米晶滑移带表现出强烈的晶体学优选取向:在18-150°C的亚地震滑移速率下的晶体可塑性

获取原文
获取原文并翻译 | 示例
           

摘要

A central aim in fault mechanics is to understand the microphysical mechanisms controlling aseismic-seismic transitions in fault gouges, and to identify microstructural indicators for such transitions. We present new data on the slip stability of calcite fault gouges, and on micro-structural development down to the nanometer scale. Our experiments consisted of direct shear tests performed dry at slip rates of 0.1-10 μm/s, at a constant normal stress of 50 MPa, at 18-150°C. The results show a transition from stable to (potentially) unstable slip above ~80°C. All samples recovered showed an optical microstructure characterized by narrow, 30-40-μm-wide, Riedel and boundary shear bands marked by extreme grain comminution, and a crystallographic preferred orientation (CPO). Boundary shear bands, sectioned using FIB-SEM (focused ion beam scanning electron microscopy), revealed angular grain fragments decreasing from 10 to 20 μm at the outer margins to ~0.3 μm in the shear band core, where dense aggregates of nanograins also occurred. Transmission electron microscopy, applied to foils extracted from boundary shears using FIB-SEM, combined with the optical CPO, showed that these aggregates consist of calcite nanocrystals, 5-20 nm in size, with the (104)[2-bar01] dislocation glide system oriented parallel to the shear plane and direction. Our results suggest that the mechanisms controlling slip include cataclasis and localized crystal plasticity. Because crystal plasticity is strongly thermally activated, we infer that the transition to velocity-weak-ening slip is likely due to enhanced crystal plasticity at >80°C. This implies that tectonically active limestone terrains will tend to be particularly prone to shallow-focus seismicity.
机译:断层力学的中心目标是了解控制断层泥中地震-地震转变的微观物理机制,并确定这种转变的微观结构指标。我们提出了方解石断层泥的滑动稳定性,以及直至纳米尺度的微观结构发展的新数据。我们的实验由直接剪切试验组成,在18-150°C下以0.1-10μm/ s的滑动速度,在50 MPa的恒定法向应力下干燥进行。结果表明,在〜80°C以上,滑移从稳定滑移到(可能)不稳定滑移。回收的所有样品均显示出光学显微结构,其特征是具有30-40μm宽的狭窄的Riedel和边界剪切带,其特征是极度的颗粒粉碎,并且具有晶体学优选取向(CPO)。使用FIB-SEM(聚焦离子束扫描电子显微镜)剖切的边界剪切带显示,角粒碎片从外缘的10到20μm减小到剪切带核心的〜0.3μm,那里也出现了密集的纳米颗粒聚集体。透射电子显微镜应用于通过FIB-SEM从边界剪切机提取的箔片,并与光学CPO结合使用,显示这些聚集体由方解石纳米晶体组成,尺寸为5-20 nm,且(104)[2-bar01]位错滑移系统平行于剪切平面和方向。我们的结果表明,控制滑移的机制包括分解和局部结晶可塑性。由于晶体可塑性被强烈地热激活,因此我们推断,由于> 80°C时增强的晶体可塑性,导致向速度弱化滑移的过渡。这意味着构造活跃的石灰岩地形将特别倾向于浅层地震活动。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号