首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates
【2h】

Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates

机译:蛇纹石凿和裸露表面在地震滑动速率下的动态减弱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (“gouge”) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed.Key Points class="unordered" style="list-style-type:disc">Gouge friction approaches that of bare surfaces at high normal stressDehydration reactions and bulk melting in serpentinite in < 1 m of slipFlash heating causes dynamic frictional weakening in gouge and bare surfaces class="kwd-title">Keywords: high-velocity friction, serpentinite, flash heating, dynamic weakening, pseudotachylyte, rapid metamorphism class="head no_bottom_margin" id="__sec2title">1. IntroductionOur understanding of the frictional behavior of faults at seismic slip velocities (>0.1 m/s) has significantly improved over the last 15 years with experiments performed on initially bare rock surfaces [e.g., Di Toro et al., ; Goldsby and Tullis, ; Han et al., ; Hirose and Shimamoto, ; Tsutsumi and Shimamoto, ] and gouges [e.g., Brantut et al., ; Han et al., ; Kitajima et al., ; Mizoguchi et al., ; Reches and Lockner, ]. In general, these studies of high-velocity friction (HVF) demonstrate that rock friction coefficients decrease dramatically from ∼0.7 to as low as 0.1 as slip velocities approach seismic rates and (in most cases) increase rapidly as velocities decelerate; this general behavior is nominally independent of rock composition [Di Toro et al., ; Goldsby and Tullis, ]. Such dynamic fault-weakening behavior revealed in laboratory experiments is consistent with several earthquake-related observations retrieved from the following: (1) seismology, e.g., the large stress drops constrained from analysis of seismic radiation patterns of some earthquakes [Imanishi and Ellsworth, ; Malagnini et al., ; Viegas et al., ] or the (debated) breakdown of the scaling between radiated energy and seismic moment [Abercrombie, ; Kanamori and Heaton, href="#b37" rid="b37" class=" bibr popnode">2000], (2) geophysics, e.g., the lack of a pronounced heat flow anomaly along major fault zones [Lachenbruch and Sass, href="#b40" rid="b40" class=" bibr popnode">1992; Fulton et al., href="#b22" rid="b22" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764699">2013] or the large seismic slip accommodated in fault patches in the Sumatra 2004 of moment magnitude (Mw) 9.3 (15 m of max slip [Stein and Okal, href="#b74" rid="b74" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764712">2005]) and the Tohoku 2011 Mw 9.0 (50 m of max slip [Fujiwara et al., href="#b21" rid="b21" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764714">2011]) events, and (3) geology, e.g., estimates of coseismic frictional strength obtained from ancient exhumed faults [e.g., Di Toro et al., href="#b13" rid="b13" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764701">2006; Griffith et al., href="#b27" rid="b27" class=" bibr popnode">2009] or active deep-drilled seismic faults [Chester et al., href="#b9" rid="b9" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764695">2013; Hirono et al., href="#b31" rid="b31" class=" bibr popnode">2007].A number of physical mechanisms have been proposed to explain the dynamic weakening behavior observed in experiments and postulated to occur on faults (see Di Toro et al. [href="#b15" rid="b15" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764703">2011], Niemeijer et al. [href="#b50" rid="b50" class=" bibr popnode">2012], and Rice and Cocco [href="#b61" rid="b61" class=" bibr popnode">2007] for a summary). In particular, mechanical data and microstructural investigations of experimentally deformed bare rocks are consistent with flash heating of asperities [Goldsby and Tullis, href="#b25" rid="b25" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764704">2011; Violay et al., href="#b79" rid="b79" class=" bibr popnode">2014], frictional melting [Di Toro et al., href="#b13" rid="b13" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764706">2006; Hirose and Shimamoto, href="#b34" rid="b34" class=" bibr popnode">2005; Niemeijer et al., href="#b49" rid="b49" class=" bibr popnode">2011; Spray, href="#b73" rid="b73" class=" bibr popnode">2005], silica gel weakening [Di Toro et al., href="#b12" rid="b12" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764713">2004; Goldsby and Tullis, href="#b24" rid="b24" class=" bibr popnode">2002], and superplasticity (grain boundary sliding accommodated by dislocation motion or diffusion) [Green et al., href="#b26" rid="b26" class=" bibr popnode">2010; Holdsworth et al., href="#b35" rid="b35" class=" bibr popnode">2013; Schubnel et al., href="#b64" rid="b64" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764705">2013]. However, all faults generate a millimeter to centimeter thick layer of gouge during rupture and seismic slip [Reches and Dewers, href="#b57" rid="b57" class=" bibr popnode">2005], even within their deeper roots (6–15 km [e.g., Sibson, href="#b66" rid="b66" class=" bibr popnode">1977; Snoke et al., href="#b72" rid="b72" class=" bibr popnode">1999]). This raises the following questions: Which dynamic-weakening mechanisms occur in gouge-bearing faults? How might the presence of gouge modify the occurrence and/or efficacy of these weakening processes at seismic slip rates? Lubrication due to the presence of powders (i.e., powder lubrication) [Han et al., href="#b29" rid="b29" class=" bibr popnode">2010; Reches and Lockner, href="#b56" rid="b56" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764702">2010; Tisato et al., href="#b76" rid="b76" class=" bibr popnode">2012] is inconsistent with the rapid recovery of frictional strength at the end of sliding. Moreover, in exposed fault zones it is commonly observed that slip tends to be localized along very thin surfaces within gouge [e.g., Chester and Chester, href="#b8" rid="b8" class=" bibr popnode">1998; Fondriest et al., href="#b18" rid="b18" class=" bibr popnode">2013; Sibson, href="#b67" rid="b67" class=" bibr popnode">2003], leading some workers to suggest that once strain is localized within gouge the system will emulate bare surface slip behavior [e.g., Smith et al., href="#b71" rid="b71" class=" bibr popnode">2012; T. Tullis, personal communication, 2013]. But is it appropriate to extrapolate rock friction behavior obtained in rock-on-rock friction experiments to natural gouge-bearing faults? Furthermore, how does the effective normal stress affect this behavior? Interestingly, the results from Smith et al. [href="#b70" rid="b70" class=" bibr popnode">2013b] on calcite gouge and Han et al. [href="#b28" rid="b28" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764697">2007] on (cohesive) calcite-bearing marble suggest that the shear stress or strength of calcite gouge is a factor of 2 or greater than marble bare surfaces at seismic slip velocities despite having localized strain.Serpentinite is a common rock type in the oceanic lithosphere, and earthquakes may propagate into serpentinized mantle along mid-oceanic ridges, transform faults, and subduction zones; the latter alone release about 85–90% of the global seismic moment [Scholz, href="#b63" rid="b63" class=" bibr popnode">2002]. For this reason, the frictional behavior of serpentinite has been studied over a wide range of slip rates from plate rates to seismic slip rates [e.g., Hirose and Bystricky, href="#b32" rid="b32" class=" bibr popnode">2007; Kohli et al., href="#b39" rid="b39" class=" bibr popnode">2011; Reinen et al., href="#b59" rid="b59" class=" bibr popnode">1992]. Moreover, serpentine group minerals are expected to react to talc, olivine, and enstatite due to frictional heating during rapid slip. These minerals are thought to be stable in the geologic record and could therefore provide evidence for seismic slip [e.g., Kohli et al., href="#b39" rid="b39" class=" bibr popnode">2011]. Currently, the only widely accepted evidence for ancient seismic faulting is the presence of pseudotachylytes [Sibson, href="#b65" rid="b65" class=" bibr popnode">1975]. Other proposed geologic evidence for seismic slip includes thermally altered biomarkers in sedimentary rocks [Polissar et al., href="#b55" rid="b55" class=" bibr popnode">2011], peculiar crystal-plastic features [Bestmann et al., href="#b5" rid="b5" class=" bibr popnode">2012; Smith et al., href="#b69" rid="b69" class=" bibr popnode">2013a, href="#b70" rid="b70" class=" bibr popnode">2013b], injection of fluidized gouge [Fondriest et al., href="#b17" rid="b17" class=" bibr popnode">2012; Lin, href="#b41" rid="b41" class=" bibr popnode">2011; Rowe, href="#b62" rid="b62" class=" bibr popnode">2013], and the combination of mirror-like surfaces with truncated and exploded grains [Fondriest et al., href="#b18" rid="b18" class=" bibr popnode">2013; Siman-Tov et al., href="#b68" rid="b68" class=" bibr popnode">2013]. As a consequence, the occurrence of serpentine breakdown minerals in slipping zones could be indicative of ancient seismicity in faults exhumed from seismogenic depths, outlining the importance for further field studies of exhumed fault zones hosted in oceanic rocks.Employing a rotary-shear apparatus, we extend the study of the frictional behavior of serpentinite rocks to higher normal stresses (up to 96.6 MPa for bare surfaces and 22.4 MPa for gouges) and slip velocities (up to 4.3 m/s for bare surfaces and 6.5 m/s for gouges) than investigated previously. We also explore differences in dynamic frictional-weakening behavior observed on serpentine gouge and during tests on initially bare surfaces of serpentine by conducting relatively short-displacement, high-velocity experiments while varying the normal stress between tests. Following each experiment, the slip surfaces and wear material were analyzed with X-ray powder diffraction (XRPD) and several microstructural analysis techniques. These analyses, coupled with 1-D thermal modeling, allow us to constrain the effects of velocity, normal stress, shear heating, strain localization, and dehydration reactions on dynamic frictional weakening of serpentine and, by extension, other materials.
机译:为了研究在亚地震到地震滑动速率下,蛇纹岩最初的裸露岩石表面和粉状蛇纹岩(“规”)之间的摩擦行为的差异,我们对富含抗蛇纹石和蜥蜴石的岩石进行了单速和多速步进摩擦实验。滑坡率(V)为0.003 m / s至6.5 m / s的蛇纹石,滑移位移最大为1.6 m,法向应力(σn)的凿子为22 MPa,裸露的表面为97 MPa。对于所有测试的σn,在V = 1 m / s时,切槽中的标称稳态摩擦值(μnss)都比裸露表面大,并且表现出很强的σn依赖性。 μnss从4.0 MPa下的0.51降至22.4 MPa下的0.39。相反,随着σn和V的增加,裸露表面的μnss值保持在〜0.1。此外,在切槽中,摩擦减弱开始时的速度和滑动之前的滑移量比裸露表面大几个数量级。对法向应力依赖性进行μnss的外推表明,在σn≥60 MPa时,防蛇纹石凿的行为接近裸露表面的行为。 X射线衍射显示样品中的脱水反应产物摩擦减弱。显微组织分析显示,在某些情况下,在切屑实验中和在所有裸露表面实验中,V≥1 m / s时,局部区域都具有类似熔体的质地。一维热模型表明,急速加热会在裸露的表面和凿上造成摩擦减弱。与较高的速度和更长的位移相比,切线的摩擦值会比裸露的表面降低,因为应变会更加分散。要点 class =“ unordered” style =“ list-style-type:disc”> <!-list-behavior =无序前缀-word = mark-type = disc max-label-size = 0-> 在高法向应力下,切屑摩擦接近裸露表面的摩擦力 蛇纹石中的脱水反应和块体熔化1 m的滑移 闪光灯加热会在切屑和裸露的表面上引起动摩擦减弱 class =“ kwd-title”>关键字:高速摩擦,蛇纹石,快速加热,动态减弱,假速溶质,快速变质 class =“ head no_bottom_margin” id =“ __ sec2title”> 1。简介通过在最初裸露的岩石表面上进行的实验,在过去15年中,我们对断层在地震滑动速度(> 0.1 m / s)时的摩擦行为的理解有了显着改善[Di Toro等,< sup> ; Goldsby和Tullis, ; Han等, Hirose和Shimamoto Tsutsumi和Shimamoto ]和凿子[例如, Brantut等。, Han等。, ; Kitajima等。, Mizoguchi等。, Reches and Lockner ]。总的来说,这些对高速摩擦力(HVF)的研究表明,随着滑移速度接近地震速率,岩石摩擦系数从〜0.7急剧降低至低至0.1,并且(在大多数情况下)随着速度的降低迅速增加。这种一般的行为名义上独立于岩石成分[ Di Toro et al 。, ; Goldsby和Tullis ]。在实验室实验中揭示的这种动态断层减弱行为与从以下各项中检索到的与地震有关的观察结果一致:(1)地震学,例如,大的应力降受某些地震的地震辐射方向图分析的约束[ Imanishi and Ellsworth Malagnini et al 。, ; Viegas等人。, ]或辐射能和地震矩之间的比例缩放的辩论性辩论[ Abercrombie ; Kanamori and Heaton href="#b37" rid="b37" class=" bibr popnode"> 2000 ],(2)地球物理学,例如,沿主要断层带[ Lachenbruch和Sass href="#b40" rid="b40" class=" bibr popnode"> 1992年缺乏明显的热流异常 ; Fulton等人。, href="#b22" rid="b22" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764699"> 2013 ]或苏门答腊2004年断层中容纳的矩量( Mw )9.3的大地震滑动(最大滑动15 m [ Stein和Okal href="#b74" rid="b74" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764712"> 2005 ])和Tohoku 2011 Mw 9.0(最大滑动量50 m [ Fujiwara等人。, href="#b21" rid="b21" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764714​​"> 2011 ])事件,以及(3)地质,例如,从古代出土的断层中获得的同震摩擦强度的估计值[例如, Di Toro等人。, href="#b13" rid="b13" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764701"> 2006 ; Griffith等。, href="#b27" rid="b27" class=" bibr popnode"> 2009 ]或活跃的深层钻探地震断层[ Chester等。, href="#b9" rid="b9" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764695"> 2013 ; Hirono等人。, href="#b31" rid="b31" class=" bibr popnode"> 2007 ]。已经提出了机制来解释在实验中观察到并假定会在断层上发生的动态减弱行为(请参阅 Di Toro等人。[ href =“#b15” rid =“ b15” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_461764703”> 2011 ], Niemeijer等人。[ href =“#b50” rid = “ b50” class =“ bibr popnode”> 2012 ]和 Rice and Cocco [ href =“#b61” rid =“ b61”类=“ bibr popnode”> 2007 ])。特别是,经过实验变形的裸露岩石的力学数据和微观结构研究与粗糙物的快速加热[ Goldsby和Tullis href =“#b25” rid =“ b25” class = “ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_461764704”> 2011 Violay等人。, href="#b79" rid="b79" class=" bibr popnode"> 2014 ],摩擦熔化[< em> Di Toro等人。, href="#b13" rid="b13" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764706"> 2006 ; Hirose和Shimamoto href="#b34" rid="b34" class=" bibr popnode"> 2005 Niemeijer等人。, href="#b49" rid="b49" class=" bibr popnode"> 2011 喷雾 href="#b73" rid="b73" class=" bibr popnode"> 2005 ],硅胶弱化[ Di Toro等人。, href="#b12" rid="b12" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764713"> 2004 Goldsby和Tullis href="#b24" rid="b24" class=" bibr popnode"> 2002 ]和超塑性(晶界由位错运动或扩散适应的滑动)[ Green等。, href="#b26" rid="b26" class=" bibr popnode"> 2010 < / sup>; Holdsworth等人。, href="#b35" rid="b35" class=" bibr popnode"> 2013 Schubnel等。, href="#b64" rid="b64" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764705"> 2013 ]。但是,在断裂和地震滑动过程中,所有断层都会生成一层毫米至厘米厚的凿层[卷取和下水道 href =“#b57” rid =“ b57” class =“ bibr popnode“> 2005 ],甚至在其更深的根部(6–15公里,例如, Sibson href =”#b66“ rid =” b66“ class =” bibr popnode“> 1977 Snoke等人。, href =”#b72“ rid =” b72“ class =” bibr popnode“> 1999 ])。这就提出了以下问题:带有切屑的断层中出现了哪些动态减弱机制?在地震滑移率下,凿子的存在如何改变这些弱化过程的发生和/或效力?由于存在粉末而进行润滑(即粉末润滑)[ Han等。, href="#b29" rid="b29" class=" bibr popnode"> 2010 ; Reches和Lockner href="#b56" rid="b56" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764702"> 2010 ; Tisato等。, href="#b76" rid="b76" class=" bibr popnode"> 2012 ]与快速在滑动结束时恢复摩擦强度。此外,在裸露的断层带中,通常会观察到滑坡倾向于沿着切屑内的非常薄的表面进行定位[例如, Chester and Chester href =“#b8” rid =“ b8“ class =” bibr popnode“> 1998 ; Fondriest等人。, href="#b18" rid="b18" class=" bibr popnode"> 2013 Sibson href="#b67" rid="b67" class=" bibr popnode"> 2003 ],导致一些工作人员建议应变位于切屑内,系统将模拟裸露的表面滑移行为[例如, Smith等。, href =“#b71” rid =“ b71” class =“ bibr popnode” > 2012 ; T. Tullis,个人通讯,2013年]。但是,将在岩石摩擦实验中获得的岩石摩擦特性外推到自然的含气断层是否合适?此外,有效的法向应力如何影响这种行为?有趣的是,这是 Smith等人的结果。 [ href="#b70" rid="b70" class=" bibr popnode"> 2013b ]上的方解石凿和 Han等。 [ href="#b28" rid="b28" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_461764697"> 2007 ]关于(粘结)方解石大理石建议尽管有局部应变,方解石的切应力或强度在地震滑动速度下比大理石裸露表面大2倍或更大。蛇纹岩是海洋岩石圈中的一种常见岩石类型,地震可能会在中段传播到蛇形化的地幔中。海洋脊,转换断层和俯冲带;仅后者就释放了全球地震矩的大约85–90%[ Scholz href="#b63" rid="b63" class=" bibr popnode"> 2002 ]。因此,已经在从板速到地震滑移率的宽滑移率范围内研究了蛇纹石的摩擦行为[例如, Hirose和Bystricky href =“#b32 “ rid =” b32“ class =” bibr popnode“> 2007 ; Kohli等人。, href="#b39" rid="b39" class=" bibr popnode"> 2011 Reinen等。, href="#b59" rid="b59" class=" bibr popnode"> 1992 ]。此外,由于快速滑动过程中的摩擦加热,预计蛇纹石族矿物会与滑石,橄榄石和顽辉石发生反应。这些矿物被认为在地质记录中是稳定的,因此可以为地震滑动提供证据[例如, Kohli等。, href =“#b39” rid =“ b39” class =“ bibr popnode”> 2011 ]。当前,古代地震断层的唯一被广泛接受的证据是假速溶质[ Sibson href="#b65" rid="b65" class=" bibr popnode"> 1975 ]。其他建议的地震滑动地质证据包括沉积岩中热改变的生物标志物[ Polissar等。, href="#b55" rid="b55" class=" bibr popnode"> 2011 ],独特的晶体塑性特征[ Bestmann等人。, href =“#b5” rid =“ b5” class =“ bibr popnode “> 2012 Smith等人。, href="#b69" rid="b69" class=" bibr popnode"> 2013a href="#b70" rid="b70" class=" bibr popnode"> 2013b ],注入流化油凿[ Fondriest等。, href="#b17" rid="b17" class=" bibr popnode"> 2012 ; Lin href="#b41" rid="b41" class=" bibr popnode"> 2011 ; Rowe href="#b62" rid="b62" class=" bibr popnode"> 2013 ],以及类似镜子的组合截断和爆炸晶粒的表面[ Fondriest等。, href="#b18" rid="b18" class=" bibr popnode"> 2013 ; Siman-Tov等。, href="#b68" rid="b68" class=" bibr popnode"> 2013 ]。因此,滑移区蛇纹石破裂矿物的出现可能表明了从地震成因深度发掘出的断层中的古代地震活动性,从而概述了对进一步研究大洋岩石中发掘出的断层带的重要性。将蛇纹岩岩石的摩擦特性的研究扩展到比其更高的正应力(裸露表面高达96.6 MPa,凿子高达22.4 MPa)和滑移速度(裸露表面高达4.3 m / s,凿子高达6.5 m / s)之前进行过调查。我们还通过进行相对短位移,高速实验,同时改变测试之间的法向应力,探索了在蛇纹石凿上以及在最初的蛇纹石裸露表面测试期间观察到的动态摩擦减弱行为的差异。在每个实验之后,使用X射线粉末衍射(XRPD)和几种微结构分析技术对滑动表面和磨损材料进行分析。这些分析,再加上一维热模型,使我们能够限制速度,法向应力,剪切加热,应变局部化和脱水反应对蛇纹石以及其他材料的动态摩擦减弱的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号