首页> 外文期刊>Biogeochemistry >Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. (Special Issue: Enzymes in biogeochemical cycles: integrating experimental data, theory, and models.)
【24h】

Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. (Special Issue: Enzymes in biogeochemical cycles: integrating experimental data, theory, and models.)

机译:微生物群落中的生理变化驱动了多年生农业生态系统中酶活性的变化。 (特刊:生物地球化学循环中的酶:整合实验数据,理论和模型。)

获取原文
获取原文并翻译 | 示例
       

摘要

Perennial agroecosystems have the potential to promote plant-microbial linkages by increasing the quantity of root carbon entering the soil. However, an understanding of how perennial cropping systems affect microbial communities remains incomplete. The objective of this study was to determine the potential for a fertilized perennial bioenergy cropping system to impact microbial growth and enzyme activity. Three times throughout the growing season we examined the activity of four enzymes involved in decomposition ( beta -glucosidase, beta -xylosidase, cellobiohydrolase, and N-acetyl glucosaminidase) in replicated plots of an annual (corn) and perennial-based (switchgrass) cropping system. We also took simultaneous measurements of microbial biomass and potential rates of microbial respiration and net N mineralization. Microbial biomass was unaffected by cropping system. Mid-summer, however, we observed increases in enzyme activity and potential microbial respiration in the perennial system that were independent of microbial biomass, likely in response to labile carbon inputs. Further, we observed lower net N mineralization, higher microbial biomass nitrogen and higher activity of nitrogen liberating enzymes, which are indicative of a community with high nitrogen demands. Overall, our research demonstrates that perennial agroecosystems can affect the physiological capacity of the microbial community, yielding communities with greater nitrogen retention and greater rates of decomposition as a result of allocation of resources towards enzyme production and nitrogen mining. These results can inform biogeochemical models with respect to the importance of temporally dynamic changes in carbon and nitrogen availability and microbial carbon use efficiency as drivers of enzyme production.
机译:多年生农业生态系统有可能通过增加进入土壤的根碳数量来促进植物与微生物的联系。但是,对多年生作物系统如何影响微生物群落的了解仍然不完整。这项研究的目的是确定多年生生物能源施肥系统对微生物生长和酶活性的影响。在整个生长季节中,我们在一年(玉米)和多年生(柳枝crop)作物的重复田地中,三遍研究了参与分解的四种酶(β-葡萄糖苷酶,β-木糖苷酶,纤维二糖水解酶和N-乙酰氨基葡萄糖苷酶)的活性。系统。我们还同时测量了微生物的生物量以及潜在的微生物呼吸和净氮矿化率。微生物量不受种植系统的影响。然而,仲夏时节,我们观察到多年生系统中酶活性和潜在的微生物呼吸增加,而与微生物生物量无关,这可能是由于不稳定的碳输入引起的。此外,我们观察到较低的净氮矿化,较高的微生物生物量氮和较高的氮释放酶活性,这表明社区对氮的需求较高。总体而言,我们的研究表明,多年生农业生态系统会影响微生物群落的生理能力,由于向酶生产和氮素开采分配资源,从而使氮素保留量更高且分解速率更高的群落。这些结果可以为生物地球化学模型提供关于碳和氮的有效时空动态变化以及微生物碳利用效率作为酶生产驱动力的重要性的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号