首页> 外文期刊>Biogeochemistry >Sulfur cycling in the water column of Little Rock Lake, Wisconsin
【24h】

Sulfur cycling in the water column of Little Rock Lake, Wisconsin

机译:威斯康星州小石湖水柱中的硫循环

获取原文
获取原文并翻译 | 示例
           

摘要

The S cycle in the water column of a small, soft-water lake was studied for 9 years as part of an experimental study of the effects of acid rain on lakes. The two basins of the lake were artificially separated, and one basin was experimentally acidified with sulfuric acid while the other served as a reference or control. Spatial and seasonal patterns of sulfate uptake by plankton (53-70 mmol m(-2) yr(-) (1)), deposition of sulfur to sediments in settling seston (53 mmol m(-2) yr(-1)), and sulfate diffusion (0-39 mmol m(-2) yr(-) 1) into sediments were examined. Measurements of inputs (12-108 mmol m(-2) yr(-1)) and outputs (5.5-25 mmol m(-2) yr(-) 1) allowed construction of a mass balance that was then compared with rates of S accumulation in sediments cores (10-28 mmol m(-2) yr(-1)) and measured fluxes of S into the sediments. Because of the low SO42- concentrations (mu mole L-1) in the lake, annual uptake by plankton (53-70 mmol m(-2) yr(-1)) represented a large fraction (> 50%) of the SO42- inventory in the lake. Despite this large flux through the plankton, only small seasonal fluctuations in SO42- concentrations (mu mole L(-)1) were observed; rapid mineralization of organic matter (half-life <3 months) prevented sulfate depletion in the water column. The turnover time for sulfate in the water column is only 1.4 yr; much less than the 11-yr turnover time of a conservative ion in this seepage lake. Sulfate diffusion into and reduction in the sediments (0-160 mu mole m(-2) d(-1)) caused SO42- depletion in the hypolimnion. Modeling of seasonal changes in lake-water SO42- concentrations indicated that only 30-50% of the diffusive flux of sulfate to the sediments was permanently incorporated in solid phases, and about 15% of sulfur in settling seston was buried in the sediments. The utility of sulfur mass balances for seepage lakes would be enhanced if uncertainty about the deposition velocity for both sulfate aerosols and SO2, uncertainty in calculation of a lake-wide rate of S accumulation in sediments, and uncertainty in the measured diffusive fluxes could be further constrained.
机译:作为酸性雨对湖泊影响的实验研究的一部分,对小型软水湖泊水柱中的S周期进行了9年的研究。该湖的两个盆地是人为分离的,一个盆地用硫酸进行了实验酸化,而另一个则作为参考或对照。浮游生物摄取硫酸盐的空间和季节模式(53-70 mmol m(-2)yr(-)(1)),硫沉积到沉降的沉淀物中的沉积物中(53 mmol m(-2)yr(-1)) ,和硫酸盐扩散(0-39 mmol m(-2)yr(-)1)到沉积物中进行了检查。测量输入(12-108 mmol m(-2)yr(-1))和输出(5.5-25 mmol m(-2)yr(-)1)可以构建质量平衡,然后与质量比进行比较沉积物核心中的S积累(10-28 mmol m(-2)yr(-1))和测得的S通入沉积物中的通量。由于湖中SO42-的浓度较低(mu mole L-1),浮游生物的年吸收量(53-70 mmol m(-2)yr(-1))占了SO42的很大一部分(> 50%) -湖中库​​存。尽管通过浮游生物的通量很大,但仅观察到SO42-浓度(μ摩尔L(-)1)的较小季节性波动。有机物的快速矿化(半衰期<3个月)防止了水柱中硫酸盐的消耗。水柱中硫酸盐的周转时间仅为1.4年;远小于该渗流湖中保守离子11年的周转时间。硫酸盐扩散到沉积物中(0-160摩尔m(-2)d(-1))并在其中沉积物减少,导致次生层中的SO42耗竭。对湖水中SO42-浓度的季节性变化进行建模表明,只有30-50%的硫酸盐向沉积物的扩散通量被永久性地固相合并,沉降沉淀物中约15%的硫被掩埋在沉积物中。如果关于硫酸盐气溶胶和SO2的沉积速度的不确定性,整个湖泊沉积物中S积累速率的计算不确定性以及测得的扩散通量的不确定性,则将增加渗流湖中硫质量平衡的效用。受约束的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号