...
首页> 外文期刊>Gait & posture >Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
【24h】

Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.

机译:与EMG到力量处理方法相比,步态期间肌肉力量的静态优化。

获取原文
获取原文并翻译 | 示例
           

摘要

Individual muscle forces evaluated from experimental motion analysis may be useful in mathematical simulation, but require additional musculoskeletal and mathematical modelling. A numerical method of static optimization was used in this study to evaluate muscular forces during gait. The numerical algorithm used was built on the basis of traditional optimization techniques, i.e., constrained minimization technique using the Lagrange multiplier method to solve for constraints. Measuring exact muscle forces during gait analysis is not currently possible. The developed optimization method calculates optimal forces during gait, given a specific performance criterion, using kinematics and kinetics from gait analysis together with muscle architectural data. Experimental methods to validate mathematical methods to calculate forces are limited. Electromyography (EMG) is frequently used as a tool to determine muscle activation in experimental studies on human motion. A method of estimating force from the EMG signal, the EMG-to-force approach, was recently developed by Bogey et al. [Bogey RA, Perry J, Gitter AJ. An EMG-to-force processing approach for determining ankle muscle forcs during normal human gait. IEEE Trans Neural Syst Rehabil Eng 2005;13:302-10] and is based on normalization of activation during a maximum voluntary contraction to documented maximal muscle strength. This method was adapted in this study as a tool with which to compare static optimization during a gait cycle. Muscle forces from static optimization and from EMG-to-force muscle forces show reasonably good correlation in the plantarflexor and dorsiflexor muscles, but less correlation in the knee flexor and extensor muscles. Additional comparison of the mathematical muscle forces from static optimization to documented averaged EMG data reveals good overall correlation to patterns of evaluated muscular activation. This indicates that on an individual level, muscular force patterns from mathematical models can arguably be more accurate than from those obtained from surface EMG during gait, though magnitude must still be validated.
机译:通过实验运动分析评估的单个肌肉力可能在数学模拟中很有用,但需要附加的肌肉骨骼和数学建模。本研究使用静态优化的数值方法来评估步态期间的肌肉力量。所使用的数值算法是在传统优化技术的基础上构建的,即使用拉格朗日乘数法求解约束的约束最小化技术。目前无法在步态分析过程中测量精确的肌肉力量。在给定特定的性能标准的情况下,开发的优化方法使用步态分析中的运动学和动力学以及肌肉结构数据来计算步态中的最佳力量。验证用于计算力的数学方法的实验方法是有限的。在人体运动的实验研究中,肌电图(EMG)通常用作确定肌肉激活的工具。 Bogey等人最近开发了一种根据EMG信号估算力的方法,即EMG-to-force方法。 [忌忌RA,佩里J,吉特AJ。一种EMG强制处理方法,用于在正常人的步态中确定脚踝肌肉的力量。 IEEE Trans Neural Syst Rehabil Eng 2005; 13:302-10],并且基于最大自愿收缩至记录的最大肌肉力量时的激活标准化。该方法在本研究中被调整为一种用于比较步态周期中静态优化的工具。静态优化产生的肌力和肌电肌所产生的肌力在plant屈肌和背屈肌中显示出相当好的相关性,而在膝屈肌和伸肌中的相关性则较小。从静态优化到已记录的平均EMG数据的数学肌肉力的其他比较显示,与评估的肌肉激活模式具有良好的整体相关性。这表明在个体层面上,尽管步幅仍需验证,但数学模型中的肌肉力量模式可以说比步态中从表面肌电图获得的肌肉力量模式更为精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号