首页> 外文期刊>European journal of mass spectrometry >Reactions of the ionised enol tautomer of acetanilide: elimination of HNCO via a novel rearrangement
【24h】

Reactions of the ionised enol tautomer of acetanilide: elimination of HNCO via a novel rearrangement

机译:乙酰苯胺的离子化烯醇互变异构体的反应:通过新型重排消除HNCO

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The reactions of ionised acetanilide, C_6H_5NH (=O) CH_3·~+, and its enol, C_6H_5NH(OH) = CH_2·~+, have been studied by a combination of tandem mass spectrometric and computational methods. These two isomeric radical cations have distinct chemistries at low internal energies. The keto tautomer eliminates exclusively CH_2 = C = O to give ionised aniline. In contrast, the enol tautomer loses H-N = C = Ovia an unusual skeletal rearrangement, to form predominantly ionised methylene cyclohexadiene. Hydrogen atom loss also occurs from the enol tautomer, with the formation of prtonate oxindole. The mechanisms for H-N = C = O and hydrogen atom loss both involve cyclisation; the former proceeds via a spiro transition state formed by attachment of the methylene group to the ipso position, whereas the latter entails the formation of a five-membered ring by attachment to the ortho position. The behaviour of labelled analogues reveals that these two processes have different site selectivities. Hydrogen atom loss involves a reverse critical energy and is subject to an isotope effect. Surprisingly, attempts to promote the enolisation of ionised acetanilide by proton-transport catalysis were unsuccessful. In a reversal of the usual situation for ionised carbonyl compounds, ionisedacetanilide is actually more stable than its enol tautomer. The enol tautomer was resistant to proton-transport catalysed ketonisation to ionised acetanilide, possibly because the favoured geometry of the encounter complex with the base molecule is inappropriate for facilitating tautomerisation.
机译:通过串联质谱法和计算方法相结合的方法研究了电离的乙酰苯胺C_6H_5NH(= O)CH_3·〜+和其烯醇C_6H_5NH(OH)= CH_2·〜+的反应。这两个异构体自由基阳离子在低内能下具有不同的化学性质。酮互变异构体专门消除CH_2 = C = O生成电离苯胺。相反,烯醇互变异构体失去H-N = C = Ovia,发生异常的骨架重排,从而形成主要离子化的亚甲基环己二烯。氢原子损失也从烯醇互变异构体发生,并形成了戊二酸羟吲哚。 H-N = C = O和氢原子损失的机理都涉及环化作用。前者通过亚甲基连接到ipso位置形成的螺线过渡态进行,而后者则需要通过连接邻位形成五元环。标记类似物的行为表明这两个过程具有不同的位点选择性。氢原子损失涉及反向临界能量,并受同位素作用。出人意料的是,通过质子传输催化来促进离子化的乙酰苯胺的烯醇化的尝试是失败的。与离子化羰基化合物的通常情况相反,离子化乙酰苯胺实际上比其烯醇互变异构体更稳定。烯醇互变异构体对质子转运催化的酮化反应具有抗电离性的乙酰苯胺作用,这可能是因为与基础分子相遇的配合物的有利几何形状不适合于促进互变异构化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号