首页> 外文期刊>Geobiology >Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution.
【24h】

Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution.

机译:地质时期内海洋锌的自生氧化铁代理及其对真核金属网进化的影响。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Here, we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones, and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn-binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case, zinc's geochemical and biological evolution may be decoupled and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn-organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints on potential couplings between the trajectory of biological and marine geochemical coevolution. 2013 John Wiley & Sons Ltd.Registry Number/Name of Substance 0 (Ferric Compounds). 1309-37-1 (ferric oxide). 7440-66-6 (Zinc).
机译:在这里,我们探索由自生铁氧化物(包括前寒武纪的铁地层,铁矿和生代热液呼出气)记录的古罗马碱锌的富集。这种新的和基于文献的铁形成分析汇编可追踪溶解的锌丰度,并限制地质时期海洋储层的大小。总体而言,铁形成记录的特征是整个前寒武纪的锌/铁比处于相当静态的范围内,与页岩记录一致(Scott等,2013,Nature Geoscience,6,125-128)。当将假设分区方案应用于该记录时,表明了近现代数量级内的古罗马碱锌浓度。我们将此检查与新的化学形态模型相结合,以解释铁的形成记录。我们提出了两种情况:首先,在除大多数硫化条件之外的所有条件下,并且与锌结合的有机配体浓度与现代海洋相似,生物可利用的锌量随时间保持相对不变。锌在真核金属组中的后期增殖以前与海洋锌的生物限制有关,但在这种情况下,真核锌金属组的扩展可能与生物学内在的进化因素更好地相关。在这种情况下,锌的地球化学和生物演化可能被解耦,并且被视为对基因组调控和锌结合转录因子多样化需求的增加。在第二种情况下,我们认为太古代有机配体的络合物含量过高,可能会使锌的生物利用度降低。然而,这取决于锌-有机配体复合物是否不能被生物利用,目前尚不清楚。在这种情况下,尽管生物利用度可能较低,但可以防止闪锌矿沉淀,从而在整个铁质和富氧条件下都保持恒定的Zn存量。这些结果为生物和海洋地球化学协同演化轨迹之间的潜在耦合提供了新的观点和约束。 2013 John Wiley&Sons Ltd.注册号/物质名称0(铁化合物)。 1309-37-1(氧化铁)。 7440-66-6(锌)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号